
Curves and Surfaces 2022
Arcachon, France


June 20 – June 24, 2022

cs2022.sciencesconf.org

Book of Abstracts





Thursday 23 Friday 24

08:45-09:00

09:00-10:00
Plenary lecture
 Rachel Ward

09:00
11:05

MS15 Deep learning in 
geometry processing

MS16 Graphs 
embedded on surfaces

CS15 Sampling
CS16 Splines

10:00-10:30 Coffee break 11:05
11:30

Coffee break

10:30-12:35

MS11 Approximation 
and deep network

MS12 Optimization 
on manifolds

CS11 Multiresolution 
CS12 Approximation 

11:30
12:30

Plenary lecture
Rida Farouki

Lunch Closing remarks

14:30-15:30
Plenary lecture

Michael Griebel
14:30
15:30

14:30
15:30

Plenary lecture
Keenan Crane,

15:30-16:00 Coffee break

16:30
19:30

16:30
19:30

MS13 High dimensional 
approximation and PDEs
MS14 Optimal transport, 

shapes
CS13 Geometry 
CS14 Sampling

18:30-20:30 Welcome cocktail 19:00
22:00

Optional boat excursion 
and dinner cocktail

Plenary lecture
Gabriele Steidl

Tuesday 21

Coffee break

MS9 Interactive Simulation 
MS10 Point configurations

on curves and surfaces
CS9 Learning 
CS10 CAGD 

Wednesday 22

Plenary lecture
Jean Bernard Lasserre

MS7 Advances in subdivision
MS8 Advances in PH curves 

and PN surfaces
CS7 Approximation 

CS8 Sampling 

MS5 Greedy and sparse 
approximation 

MS6 Advances in 
phase retrieval 

CS5 PDEs
CS6 Isogeometric Analysis

Coffee break

Posters Posters

MS3 Sparsity, optimization
and learning

MS4 Advances in IGA 
and its applications

CS3 Imaging
CS4 CAGD

15:30
16:30

15:30
16:30 

Plenary lecture
Yaron Lipman

16:00-18:30

Monday 20

Welcoming remarks

Plenary lecture
Johannes Wallner

Coffee break

MS1 Nonlocal and Geometric 
Data Analysis

MS2 Random matrices 
and approximation
CS1 Optimization

CS2 Splines





Plenary lectures

1





Moments, positive polynomials and the Christoffel

function

Jean B. Lasserre
LAAS-CNRS & Institute of Mathematics, Université de Toulouse

lasserre@laas.fr

In the first part of the talk we briefly describe the Moment-SOS hierarchy [1, 2], a methodology to solve the
Generalized Moment Problem(GMP) with algebraic data, whose list of potential applications is almost endless,
and global optimization being its simplest instance. In a second part we briefly consider the inverse problem
of recovering the algebraic boundary of a basic semi-algebraic set from the sole knowledge of moments of the
Lebesgue measure on the set [4]. Finally, the third part of the talk is devoted to the Christoffel function [3], a
well-known tool in theory of approximation and orthogonal polynomials. We will describe how it nicely connects
with the first two parts of the talk, in particular for recovering the graph of a function from moments of the
measure supported on the graph, but also for its role in a key aspect of algorithmic polynomial optimization.

References

[1] J. B. Lasserre. Moments, Positive Polynomials and Their Applications, Imperial College Press, London,
UK, 2009.

[2] J. B. Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization, Cambridge University
Press, Cambridge, UK, 2015.

[3] J. B. Lasserre, E. Pauwels, M. Putinar. The Christoffel-Darboux Kernel for Data Analysis, Cambridge
University Press, Cambridge, UK, 2022.

[4] J. B. Lasserre, M. Putinar. Algebraic-exponential Data Recovery from Moments, Discrete & Comput.
Geom., 54: 993–1012, 2015.

3



Generalized sparse grid methods and applications

Michael Griebel
Institut für Numerische Simulation, Universität Bonn, Germany

griebel@ins.uni-bonn.de

High-dimensional problems appear in various mathematical models. Their numerical approximation involves
the well-known curse of dimension, which renders any direct discretization obsolete. One approach to circumvent
this issue, at least to some extent, is the use of generalized sparse grid methods, which can exploit additional
smoothness properties if present in the underlying problem.

In this talk, we will discuss the main principles and basic features of generalized sparse grids and show their
application in such diverse areas as econometrics, fluid dynamics, quantum chemistry, uncertainty quantification
and machine learning.
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Computing with isometries and developable surfaces

Johannes Wallner
TU Graz

j.wallner@tugraz.at

Developable surfaces constitute a prominent class of surfaces, besides being important for applications – they
represent the shapes of thin sheet material as it bends from a flat state into space without stretching or tearing.
Unfortunately, geometric modeling with developables is a notoriously difficult subject, and consequently there
has been a great number of individual contributions to it. Nearly all of the well-known geometric properties
of developables have been pressed into service for characterizing developability for different kinds of surface
representations. These include global ones like the existence of an orthgonal network of geodesic curves, local
ones like vanishing Gauss curvature, or the special geometry of tangent planes and rulings which developables are
known to possess. Quite a few of these properties have led to effective computational treatments of developables,
often by means of global optimization.

This presentation reports on some progress made in recent years. For example, both splines and meshes
have been successfully used to model developables with curved creases [4, 1]. Very promising approaches to
developability arise in connection with so-called checkerboard patterns which are associated to general quad
meshes with regular combinatorics. One way to use them is to model developables not directly, but via isometric
mappings from a planar domain. As it turns out, the possibility of modeling isometric mappings is highly useful
in its own right [2, 3]. We do not believe that the checkerboard pattern method is exhausted yet, and in fact
work on this topic is ongoing.

References

[1] C. Jiang, K. Mundilova, F. Rist, J. Wallner, and H. Pottmann. Curve-pleated structures. ACM Trans.
Graphics 38(6), article no. 169 (13pp.), 2019.

[2] C. Jiang, C. Wang, F. Rist, J. Wallner, and H. Pottmann. Quad-mesh based isometric mappings and
developable surfaces. ACM Trans. Graphics 39(4), article no. 128 (13pp.), 2020.

[3] C. Jiang, H. Wang, V. Ceballos Inza, F. Dellinger, F. Rist, J. Wallner, and H. Pottmann. Using isometries
for computational design and fabrication. ACM Trans. Graphics 40(4), article no. 42 (12 pp.), 2021.

[4] C. Tang, P. Bo, J. Wallner, and H. Pottmann. Interactive design of developable surfaces. ACM Trans.
Graphics 35(2) article no. 12 (12 pp.), 2016.
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Global constraints in Hermite interpolation problems

Rida T. Farouki
University of California Davis

farouki@ucdavis.edu

Hermite interpolation of discrete data — points, tangents, curvatures, etc. — is a common approach to the
construction of planar and spatial curves. The imposition of global (integral) constraints is more difficult, and
therefore less commonly considered. We consider two types of global constraints that can be exactly achieved
by using Pythagorean–hodograph curves. The first is the imposition of an exact arc length for the interpolant,
and it is shown that this can be achieved for both for planar and spatial G1 end–point data by use of quintic
Pythagorean–hodograph curves [1, 2]. The second constraint involves the construction of a rational adapted
orthonormal frame (comprising the curve tangent and two unit vectors spanning the curve normal plane) that
satisfies prescribed initial/final orientations. Since the well–known rotation–minimizing frames are solutions of
an initial–value problem, they are incompatible with this constraint. Consequently, the minimal–twist frame is
introduced — an orthonormal frame with prescribed initial and final instances, with the least possible value for
the integral of the tangent component of its angular velocity. The construction of rational minimal twist frames
on both open and smooth closed–loop Pythagorean–hodograph curves is demonstrated [3, 4].

Joint work with: Soo Hyun Kim, Hwan Pyo Moon.

References

[1] R. T. Farouki. Construction of G1 planar Hermite interpolants with prescribed arc lengths. Computer Aided
Geometric Design, 46:64–75, 2016.

[2] R. T. Farouki. Existence of Pythagorean–hoodgraph quintic Hermite interpolants to spatial G1 Hermite
data with prescribed arc lengths. Journal of Symbolic Computation, 95:202–216, 2019.

[3] R. T. Farouki and H. P. Moon. Rational frames of minimal twist along space curves under specified boundary
conditions. Advances in Computational Mathematics, 44:1627–1650, 2018.

[4] R. T. Farouki, S. H. Kim, and H. P. Moon. Construction of periodic adapted orthonormal frames on closed
space curves. Computer Aided Geometric Design, 76: article 101802, 2020.
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Geometry Processing with Intrinsic Triangulations

Keenan Crane
Carnegie Mellon University
keenanc@andrew.cmu.edu

The intrinsic viewpoint was a hallmark of 19th century geometry, enabling one to reason about shapes
without needing to consider an embedding in space—and leading to major developments in the 20th century
such as Einstein’s theory of general relativity. Yet 21st century digital geometry processing still largely adopts an
extrinsic mindset, where the geometry of a polyhedral surface is expressed via vertex positions in n-dimensional
space. This talk explores how the intrinsic view of polyhedral surfaces helps relax some standard assumptions
in geometric computing, leading to algorithms that are often more flexible and numerically more robust. In
particular we will examine fundamental data structures for intrinsic triangulations, extensions of important
triangulation algorithms to curved surfaces,
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Designing Invariant and Equivariant Neural Networks

Yaron Lipman
Weizmann Institute, Meta AI

yaron.lipman@weizmann.ac.il,ylipman@fb.com

Many tasks in machine learning (ML) require learning functions that are invariant or equivariant with respect
to symmetric transformations of the data. For example, graph classification is invariant to permutations of its
nodes, while recognizing the shape of a point cloud is invariant to both permutation and Euclidean motion of its
points. Designing parameteric models (i.e., neural networks) that are by construction invariant or equivariant to
symmetries of the data has been proven successful in many ML tasks involving data such as images, sets and
point-clouds, and graphs. In designing invariant/equivariant neural network model there are few factors that
should be taken into account: (i) The expressive/approximation power of the model; (ii) the computational and
memory complexity of the model; (iii) the model’s practical performance (inductive bias).

In this talk I will review two methodologies for designing invariant/equivariant networks: The intrinsic
method, and the extrinsic method. The intrinsic method first characterizes invariant/equivariant primitive
functions, such as linear transformations, and then composes these with non-linear activations to build the
final parametric model. Extrinsic methods, on the other hand, apply symmetrization to general parametric
functions. In the talk I will review some earlier works in this space, and provide an in-depth description of
Frame Averaging, a recent symmetrization approach, that in some cases allows designing efficient and maximally
expressive invariant/equivariant models.

Joint work with: Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J. Smith
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Approximation of Measures by

Measures supported on Curves

Gabriele Steidl
TU Berlin

steidl@math.tu-berlin.de

The approximation of probability measures on manifolds by measures supported in lower dimensions is a
classical task in approximation and complexity theory with a wide range of applications. In this talk, we focus
on measures supported on curves, where we highlight two approaches:

i) Principal curves are natural generalizations of principal lines arising as first principal components in the
Principal Component Analysis. They can be characterized from a stochastic point of view as so-called
self-consistent curves based on the conditional expectation and from the variational-calculus point of view
as saddle points of the expected difference of a random variable and its projection onto some curve, where
the current curve acts as argument of the energy functional. We show that principal curves in Rd can be
computed as solutions of a system of ordinary differential equations and we provide several examples for
principal curves related to the uniform distribution on certain domains, see [1].

ii) Discrepancy minimizing curves aim to minimize so-called discrepancies between measures. Besides proving
optimal approximation rates in terms of the curve’s length and Lipschitz constant, we are interested in the
numerical minimization of the discrepancy between a given probability measure and the set of push-forward
measures of Lebesgue measures on the unit interval by Lipschitz curves. We present numerical examples
for measures on the 3-dimensional torus, the 2-sphere, the rotation group on R3 and the Grassmannian of
all 2-dimensional linear subspaces of R3. Our algorithm of choice is a conjugate gradient method on these
manifolds, which incorporates second-order information. For efficient gradient and Hessian evaluations
within the algorithm, we approximate the given measures by truncated Fourier series and use fast Fourier
transform techniques on these manifolds, see [2]. Finally, we are interested in the relation of our approach
to Wasserstein gradient flows of discrepancies.

Joint work with: R. Beinert, A, Bërdëllima, M. Ehler, M. Gräf, S. Neumayer

References

[1] R. Beinert, A, Bërdëllima, M. Gräf, and G. Steidl. On the dynamical system of principal curves in Rd.
Preprint arXiv:2108.00227, 2021.

[2] M. Ehler, M. Gräf, S. Neumayer, and G. Steidl. Curve based approximation of measures on manifolds by
discrepancy minimization. Foundations of Computational Mathematics, 21(6), 1595–1642, 2021.
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Concentration for random matrix products, with

applications

Rachel Ward
University of Texas at Austin
rward@math.utexas.edu

We will survey recent concentration inequalities for products of independent random matrices. Such random
matrices naturally appear in the analysis of stochastic and online optimization such as stochastic gradient
descent. We illustrate the power of these results with two applications: improved rates of convergence for
streaming Principal Component Analysis beyond rank-1 updates, and a proof that minibatch stochastic gradient
descent with Polyak momentum achieves the optimal fast linear rate of convergence as in the deterministic
setting, provided the minibatch size is above a critical threshold. We conclude by discussing several open
problems inspired by applications.
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Fast and accurate optimization on the orthogonal

manifold without retractions

Pierre Ablin
CNRS-PSL University-Université Paris-Dauphine

pierre.ablin@dauphine.psl.eu
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Figure 1: Learning curves for a
deep residual network with or-
thogonal weights on CIFAR10

We let f : Rp×p → R a smooth function, and consider the problem of
minimizing f over the orthogonal manifold Op = {X ∈ Rp×| X>X = Ip}.
We study iterative algorithms that produce a sequence of iterates Xk that
should converge to the solution of the problem. In order to find Xk+1,
Riemannian gradient descent [1] first computes the Riemannian gradient
Gk, i.e. the projection of ∇f(Xk) in the tangent space at Xk, which is the
linear space TXk

= {AXk| A> = −A}. Simple computations give Gk =
Skew(∇f(Xk)X>k )Xk. This algorithm then uses a retraction to move in the
opposite direction while staying on the manifold. For instance, the classical
exponential retraction gives Xk+1 = exp(−ηSkew(∇f(Xk)X>k ))Xk, with
η > 0 a step size: it is straightforward to check that if Xk is orthogonal, then
Xk+1 is still orthogonal, and that as η gets small, we have Xk+1 ' Xk−ηGk.
Unfortunately, the numerical computation of retractions on the orthogonal
manifold always involves some expensive linear algebra operation, such as
matrix inversion, exponential or square-root. These operations quickly become expensive as the dimension p
grows.

To bypass this limitation, we propose the landing algorithm which does not use retractions. Letting N (X) =
1
4‖X>X − Ip‖2F the “distance” to the manifold, we define the landing field as
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Figure 2: Time required to compute
500 retractions when A and X are of
size p× p, on a GPU.

Λ(X) = Skew(∇f(X)X>)X + λ∇N (X),

and the landing algorithm simply iterates Xk+1 = Xk − ηΛ(Xk). The
algorithm is not constrained to stay on the manifold but the term
∇N (X) progressively attracts it towards the manifold.

One iteration of the landing algorithm only involves matrix multi-
plications, which makes it cheap compared to its retraction counter-
parts, especially on modern hardware like GPU’s. Fig 2 illustrates
the computational cost of the landing field compared to most classical
retractions. Theoretically, we show that the algorithm converges with
the usual rate for a non-convex problem: with small enough step-size
η, we get supk≥K N (Xk) = O( 1

K ) and supk≥K ‖Gk‖2 = O( 1
K ), show-

ing that the algorithm reaches stationary points of the optimization
problem at a 1/

√
K rate, just like Riemannian gradient descent [2].

Numerical experiments demonstrate the promises of our approach in
settings where computing retractions is very costly, such as training of deep neural networks with orthogonal
weights. Fig. 1 displays the test error of a deep residual network with orthogonal weights trained on the CIFAR
10 dataset: the landing method is the fastest.

Joint work with: Gabriel Peyré (CNRS - PSL University - ENS)

References

[1] Pierre-Antoine Absil, Robert Mahony and Rodolphe Sepulchre. Optimization algorithms on matrix mani-
folds. Princeton University Press, 2009.

[2] Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis. Global rates of convergence for nonconvex opti-
mization on manifolds. IMA Journal of Numerical Analysis 39.1 (2019): 1-33.
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Non-Parametric Estimation of Manifolds from Noisy

Data

Barak Sober
Department of Statistics and Data Science, Digital Humanities

The Hebrew University of Jerusalem
Barak.Sober@mail.huji.ac.il

A common observation in data-driven applications is that high dimensional data has a low intrinsic dimen-
sion, at least locally. In this work, we consider the problem of estimating a d dimensional sub-manifold of RD

from a finite set of noisy samples. Assuming that the data was sampled uniformly from a tubular neighborhood
of M ∈ Ck, a compact manifold without boundary, we present an algorithm that takes a point r from the

tubular neighborhood and outputs p̂n ∈ RD, and T̂p̂n
M an element in the Grassmanian Gr(d,D). We prove

that as the number of samples n → ∞ the point p̂n converges to p ∈ M and T̂p̂nM converges to TpM (the
tangent space at that point) with high probability. Furthermore, we show that the estimation yields asymptotic

rates of convergence of n−
k

2k+d for the point estimation and n−
k−1
2k+d for the estimation of the tangent space.

These rates are known to be optimal for the case of function estimation.

Joint work with: Yariv Aizenbud.
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Design by planar and spatial PH B-Spline curves

Gudrun Albrecht
Escuela de Matemáticas, Universidad Nacional de Colombia, Sede Medelĺın

galbrecht@unal.edu.co

This talk deals with the recently introduced classes of planar and spatial Pythagorean Hodograph (PH) B-
Spline curves. PH B-Spline curves are odd-degree, non-uniform, parametric B-Spline curves whose arc length is
a B-Spline function of the curve parameter and can thus be computed explicitly without numerical quadrature.
Thus, although Pythagorean-Hodograph B-Spline curves have fewer degrees of freedom than general B-Spline
curves of the same degree, they offer unique advantages for computer-aided design and manufacturing, robotics,
motion control, path planning, computer graphics, animation, and related fields. Further details about these
curves can be found in [1, 2, 3].

After shortly reviewing their construction and main properties we address solutions to several curve design
applications, including the design of a PH B-Spline curve closest to a given reference curve, the interpolation
of point and second order Hermite data as well as the construction of almost rotation minimizing spatial PH
B-Spline curves as spine curves of rational tensor product B-Spline pipe surfaces.

Joint work with: Carolina Beccari, Lucia Romani.

References

[1] G. Albrecht, C. V. Beccari, J. Ch. Canonne, L. Romani. Planar Pythagorean-Hodograph B-Spline curves.
Computer-Aided Geom. Design, 57, 57–77, 2017.

[2] G. Albrecht, C.V. Beccari, L. Romani. Spatial Pythagorean-Hodograph B-Spline curves and 3D point data
interpolation. Computer-Aided Geom. Design, 80, 101868, 2020.

[3] G. Albrecht, C.V. Beccari, L. Romani. G2/C1 Hermite interpolation by planar PH B-spline curves with
shape parameter. Applied Mathematics Letters, 121, 107452, 2021.
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Projective equivalences and µ-bases of rational curves in

any dimension.

Juan G. Alcázar
Universidad de Alcalá(UAH), Madrid, Spain

juange.alcazar@uah.es

The notion of a µ-basis was developed several years ago in the context of curves implicitization [2]. From
a geometric point of view, a µ-basis of a rational curve in Rn is a set of n rational curves of smaller degree,
that can replace the original curve for several operations like implicitizing, detecting properness, inverting, etc
[2, 4, 5]. On the other hand, projective equivalences between rational curves in Rn have been studied in recent
years [1, 3]. The algorithms for checking projective equivalence depend heavily on the degrees of the curves to
be analyzed. In this talk, we will show how projective equivalences between rational curves in Rn are transferred
to the elements of smallest degree of the µ-bases of the curves. These elements of smallest degree can be found
without computing the whole µ-basis. As a result, we have a way to reduce the cost of computing the projective
equivalences between rational curves in Rn by replacing the given curves for the curves represented by the
elements of smallest degree of the µ-bases of the curves, which have a much smaller degree compared to the
original degree of the curves.

Joint work with: Carlos Hermoso (UAH), Sonia Pérez-Dı́az (UAH), Li-Yong Shen (UCAS).

References

[1] Bizzarri M., Lávička M., Vršek J. (2020) Computing projective equivalences of special algebraic varieties.
Journal of Computational and Applied Mathematics, Vol. 367, 112438.

[2] Cox D.A., Sederberg T.W., Chen F. (1998) The Moving Line Ideal Basis of Planar Rational Curves.
Computer Aided Geometric Design, Vol. 15, pp. 803–827.

[3] Hauer M., Jüttler B. (2018) Projective and affine symmetries and equivalences of rational curves in arbitrary
dimension. Journal of Symbolic Computation, Vol. 87, pp. 68–86. Doklady Akademii Nauk, 37(2):227–229,
1942.

[4] Pérez-Dı́az S., Shen L-Y. (2021) Inversion, Degree, Reparametrization and Implicitization of Rational Planar
Curves Using µ-Basis. Computer Aided Geometric Design, Vol. 84, 101957.

[5] Song N., Goldman R. (2009) mu-bases for polynomial systems in one variable. Computer Aided Geometric
Design, Vol. 26, ppp. 217–230.
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From Delaunay to Curved Optimal Delaunay

Triangulations

Pierre Alliez
Inria

pierre.alliez@inria.fr

Figure 1: A Bézier mesh (here with 200 cubic patches) can capture a curved domain with orders of magnitude
less elements than a linear counterpart, for a given Hausdorff distance.

Meshes with curvilinear elements hold the appealing promise of higher-order numerical accuracy compared
to their commonly-used straight-edge counterparts. However, the generation of curved meshes remains a com-
putationally expensive endeavor: high-order parametric elements are notoriously difficult to conform to a given
boundary geometry, and enforcing a smooth and non-degenerate Jacobian everywhere brings additional numer-
ical difficulties to the meshing of complex domains. We extend Optimal Delaunay Triangulations (ODT) [1]
to curved and graded isotropic meshes. We show that the measure of element distortion underlying the ODT
approach can be re-expressed as a potential energy whose minimization amounts to an equidistribution of the
gradient of the deformation field, thus regularizing simultaneously the size and shape of the simplicial elements.
After formulating a non-shrinking traction to favor uniform and isotropic elements at the boundary, we show
that this interpretation of ODT also applies for curved meshes made of Bézier simplices. The resulting curved
meshes provide coarse geometric descriptions of arbitrary 2D or 3D domains with a much improved fit to the
domain boundary due to their piecewise polynomial nature, see Figure 1. Moreover, our construction naturally
promotes smoothness of the gradient of the induced geometric map inside and across elements [2].

Joint work with: Leman Feng, Laurent Busé, Hervé Delingette and Mathieu Desbrun.

References

[1] Long Chen, Jin-chao Xu. Optimal Delaunay Triangulations. J. Computational Mathematics, 299–308, 2004.

[2] Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette and Mathieu Desbrun. Curved Optimal Delaunay
Triangulation. ACM Transactions on Graphics - Proceedings of SIGGRAPH, 2018.
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Lebesgue-type inequalities in greedy approximation with

respect to bases

José L. Ansorena
University of La Rioja

joseluis.ansorena@unirioja.es

Let (Gm)∞m=1 denote the thresholding greedy algorithm (TGA for short) of a basis of a Banach space X.
To measure the efficiency of the TGA is customary to use the Lebesgue parameters (Lm)∞m=1, defined for each
m ∈ N as the optimal constant C = C(m) such that

‖f − Gm(f)‖ ≤ C ‖f − g‖

for all f ∈ X and all linear combinations, g, of m vectors of the basis.
Calculating the exact value of the Lebesgue constants can be in general a difficult task, so in order to

study the efficiency of non-greedy bases we must settle for obtaining easy-to-handle parameters that control
the asymptotic growth of (Lm)∞m=1. Most of of such parameters and estimates have sprung from the celebrated
characterization of greedy bases by Konyagin and Telmyakov [1]. In fact, several authors have obtained estimates
for the Lebesgue constants, either of general bases or of bases with some special features, in terms of the
unconditionality constants (km)∞m=1 and a sequence of democracy-like parameters that fits their purposes.

In this talk, we introduce a new sequence of democracy-like parameters, which we call (λm)∞m=1, which
combined linearly with the unconditionality parameters determines the growth of the Lebesgue parameters.
That is,

Lm ≈ max{km,λm}, m ∈ N.

This result provides an answer to a problem raised by Temlyakov during the Concentration week on greedy
algorithms in Banach spaces and compressed sensing held on 18–22 July, 2011, at Texas A&M University.

Joint work with: Fernando Albiac, Pablo Berná.

References

[1] S. L. Konyagin and V. N. Temlyakov. A remark on greedy approximation in Banach spaces. East J. Approx.,
5(3):365–379, 1999.
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Diffeomorphic Deformations and Topological Changes for Trees
of 3D Curves

Pierre Louis Antonsanti
Université de Paris - GE Healthcare

pierrelouis.antonsanti@ge.com

The study of tree structures has many applications in for instance the evolution of species (phylogenetic trees), biolog-
ical structures (plants) or anatomical ones (vascular or pulmonary trees). When labeling the extremities of these trees, the
leaves, we face a type of topological change related to the order of appearance of the different branches in the trees. In the
presented work we propose a framework for the alignment of 3D curve trees allowing both geometrical and topological
deformations of an object, the source, onto a target. For this end we combine the tree space representation proposed by
[1] by immersing the trees in a space composed of juxtaposed Euclidean spaces called orthant with a LDDMM defor-
mation guided by Optimal Transport such as [2]. Each orthant is associated with a given topology found in a database
or built from a priori knowledge. The trees are considered rooted and binary, and one topology corresponds to a unique
bifurcation ordering. The source tree of our registration problem is moving inside the tree space.

The LDDMM then provide a realistic diffeomorphic deformation of the shape along with its ambient space. The
Optimal Transport is used in the data attachment term to enforce a pairing of the branches from the deformed source and
the target. The overall registration is formulated as the minimization of a cost function, sum of the classic LDDMM cost
function and a regularization term in the tree space.

(a) (b) (c) (d)

Figure 1: Registration of a template tree (a) obtained with the Sturm Mean in the space of tree-like shapes obtained
with 20 trees and 11 possible topologies. The intermediate registration at coarse scale of the data attachment term in the
optimization (b) seeks for the correct topology. The registration at the end of the minimization procedure (c) is aligned to
the target’s geometry and topology (d).

Joint work with: Joan Glaunès.

References
[1] A. Feragen. Toward a theory of statistical tree-shape analysis. IEEE transactions on pattern analysis and machine

intelligence, 35(8):2008–2021, 2012.

[2] J. Feydy. Optimal Transport for Diffeomorphic Registration. Lecture Notes in Computer Science, 291–299, 2017.
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Lower bounds in rational approximation to delays

Laurent Baratchart
INRIA Sophia-Antipolis

Laurent.Baratchart@inria.fr

It is well-known that transfer functions of delay systems are hard to approximate by rational functions. This
phenomenon, which is interesting from the point of view of approximation theory, is also a concern in problems
where the frequency response of a device must be approximated by a model involving rational elements; e.g.
in identification and matching. For instance, the transfer function s 7→ exp{−τs} of a pure delay τ , where the
complex variable s ranges over the right half-plane, has best rational approximant 0 on the imaginary axis:
no nonzero rational function r exists such that ‖ exp−τ ·−r‖L∞(iR) < 1; here, L∞(iR) refers to the sup norm
on the imaginary axis, which represents the frequency axis in a system-theoretic context. We shall discuss a
band-limited and norm-constrained version of the issue just mentioned, namely:

given an interval I0 = [−ω0, ω0] and M > 0, how small can the maximum of |e−iτω − rn(iω))| be for rn
a rational function of type (n, n) (the ratio of two polynomials of degree at most n) wand ω ∈ I0, under the
constraint that ‖e−iτω − rn(iω)‖L∞(R\I0) ≤M?

Specifically, we will offer a lowerbound for this quantity.
The path we go is by perturbation of s 7→ exp{−τs} into a Blaschke product and then comparison with

L2-approximation, using results from [1] which depend on a topological argument.
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Overparameterization is a key factor in the absence of convexity to explain global convergence of gradient
descent (GD) for neural networks. Beside the well studied lazy regime, infinite width (mean field) analysis
has been developed for shallow networks, using on convex optimization technics. To bridge the gap between
the lazy and mean field regimes, we study Residual Networks (ResNets) in which the residual block has linear
parameterization while still being nonlinear. Such ResNets admit both infinite depth and width limits, encoding
residual blocks in a Reproducing Kernel Hilbert Space (RKHS). In this limit, we prove a local Polyak-Lojasiewicz
inequality. Thus, every critical point is a global minimizer and a local convergence result of GD holds, retrieving
the lazy regime. In contrast with other mean-field studies, it applies to both parametric and non-parametric cases
under an expressivity condition on the residuals. Our analysis leads to a practical and quantified recipe: starting
from a universal RKHS, Random Fourier Features are applied to obtain a finite dimensional parameterization
satisfying with high-probability our expressivity condition.

Joint work with: Gabriel Peyré, François-Xavier Vialard.
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Gaussian processes (GPs) are a cornerstone of modern Bayesian methods, used almost wherever one may
require nonparametric priors. The most typical use of GPs is in Gaussian process regression, also known
as kriging. Quite naturally, the theory of Gaussian Process methods is well-developed. Aside from limited
special cases in which Fourier analysis is applicable, GP-based methods have mostly been studied under large-n
asymptotics , which involve treating measurement locations as random and letting their number go to infinity.
In this paper we report intriguing theoretical results obtained under a different asymptotic, one that treats the
data as fixed, rather than random, with fixed sample size. The limit we look at is the so-called “flat limit”,
pioneered by Driscoll & Fornberg in 2002. The flat limit consists in letting the spatial width of the kernel
function go to infinity, which results in the covariance function becoming flat over the range of the data.

Studying Gaussian processes under the flat limit may seem at first sight to be entirely pointless - does
that not correspond to a prior that contains only flat functions? Surprisingly, we show that the answer is no.
This occurs because covariance functions have a second hyperparameter that sets the vertical scale (pointwise
variance). When one lets pointwise variance grow as the covariance becomes wider, the actual function space
spanned by Gaussian processes remains interesting and useful. In the cases studied here, they are (multivariate)
polynomials and (polyharmonic) splines.
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The figure shows GP regression compared to its flat limit approximation. In each panel, the solid black line
represents the fit of a GP to the datapoints shown in blue kernel. We use a stationary Matèrn kernel with
a fixed spatial scale, but vary its vertical scale parameter across the four panels, so that the resulting fit has
different degrees of freedom δ. With more degrees of freedom, the fit becomes closer to the measurements. In
light blue, the confidence bands of the fit. Superimposed, we show a “flat limit” approximation to the GP, which
corresponds to fitting a smoothing spline model that would be equivalent with the spatial scale parameter going
to infinity. The good quality of the approximation in such cases shows that our results could have interesting
practical applications.

A technical report is available at https://arxiv.org/abs/2201.01074.

Joint work with: Pierre-Olivier Amblard, Konstantin Usevich, Nicolas Tremblay.

Tobin A Driscoll and Bengt Fornberg. Interpolation in the limit of increasingly flat radial basis. Computers
& Mathematics with Applications, 43(3-5):413–422,2002.
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Consider the problem of recovering a Dirac spike train F (x) =
∑K

k=1 akδxk
, where each xk ∈ (R/2πZ) is

an unknown point on a 1D circle, from its low-frequency trigonometric moments F̂ (n) =
∑K

k=1 ake
jxkn, for

|n| ≤ N . This is the well-known question of sparse super-resolution, providing a popular model for several
problems in computational mathematics and engineering, including spectral estimation, direction of arrival,
imaging of point sources, sampling of signals with finite rate of innovation below the Nyquist limit, among
others. Over the years, several extensions and generalizations of the above problem have been developed,
including additional parametric models, and additional domains such as the torus or the sphere. On the other
hand, allowing for high-order derivatives of Diracs enables to tackle problems such as recovery of polygons from
moments, and high-accuracy recovery of piecewise-smooth functions [1].

(a) (b) (c)

Figure 1: Generalized super-resolution on the sphere. (a) The original signal with R = 2 and K = 3. (b) An example
reconstruction with N = 8 and additive error of magnitude O(N−2). The red circles represent the true {xk} while
the black crosses represent the reconstructed locations. The background is the original low-resolution data used in the
algorithm. (c) Decay of the error is super-linear: |x̃k − xk| ∼ N−R−1.

Let M be a homogeneous compact Riemannian manifold (without boundary), and denote by {λn, φn}∞n=0

the spectral decomposition of the manifold Laplacian, where 0 = λ20 < λ21 ≤ · · · ↑ +∞ are repeated ac-
cording to multiplicity, while the real-valued orthonormal eigenfunctions {φn}∞n=0 constitute a basis for the
Hilbert space L2(M). In this work we consider the problem of super-resolution recovery of signals F which

are modelled as sparse linear combinations F ∼ ∑K
k=1

∑R
r=0 ak,rGr(x;xk), where the “Bernoulli spline” Gr is

the Green’s function of the fractional Laplacian operator (I + ∆)r/2, from their low-frequency measurements

F̂n := ⟨F,φn⟩M , λn ⩽ N . We build a constructive method to recover the model parameters by a hybrid
two-stage approach. Assuming that the centers {xk} are separated by ⪆ 1

N , we first apply a “sharpening” filter
in the spectral domain, constructed using a localized Paley-Wiener type theory developed in [2] – obtaining
an approximate locations of the centers {xk} and the amplitudes {ak,0}. Subsequently, we fine-tune the initial
estimates by a nonlinear least squares fit, and analyze the stability of this optimization problem. Our numerical
experiments in Figure 1 for the 2D sphere with noisy data show super-linear convergence for recovering {xk}
as N → ∞. Our reconstruction procedure can in principle be used to localize supports of measures supported
on curves, or submanifolds, of M, and even on arbitrary metric measure spaces.

Joint work with: H.Mhaskar.
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Stochastic gradient descent is one of the most common iterative algorithms used in machine learning. While
being computationally cheap to implement, recent literature suggests it may have implicit regularization proper-
ties that prevent over-fitting. This paper analyzes the properties of stochastic gradient descent from a theoretical
standpoint to help bridge the gap between theoretical and empirical results. We specifically tackle the case of
heavy-tailed noise, since recent results have shown empirically that noise due to mini-batch sampling can be
non-Gaussian.

Most theoretical results either assume convexity or only provide convergence results in mean, while this paper
proves convergence bounds in high probability without assuming convexity. By high-probability, we mean that
our bounds are of the form “with probability at least 1 − δ, errork ≤ g(k, δ)”, for some function g (decreasing
in the number of iterations k) that depends at most polynomially on log(δ−1), rather than on δ−1.

Assuming strong smoothness, we prove high probability convergence bounds in two settings:

1. assuming the Polyak- Lojasiewicz inequality and norm sub-Gaussian gradient noise, and

2. assuming norm sub-Weibull gradient noise.

In the first setting, in the setting of statistical learning, we combine our convergence bounds with existing
generalization bounds based on algorithmic stability in order to bound the true risk and show that for a certain
number of epochs, convergence and generalization balance in such a way that the true risk goes to the empirical
minimum as the number of samples goes to infinity.

In the second setting, as an intermediate step to proving convergence, we prove a probability result of
independent interest. The probability result extends Freedman-type concentration beyond the sub-exponential
threshold to heavier-tailed martingale difference sequences.

Joint work with: Liam Madden, Emiliano Dall’Anese.
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The morphology of today’s violin differs greatly from that of the first instruments of the late 16th century.
Between 1750 and 1850, in order to meet the standards suggested by famous orchestras and conservatories,
many ancient violins have been reduced. For example, the following figure shows a reduced pre-1750 violin as
it looks today (left) and an estimate of its original dimensions (right) [1].

Figure 1: Reduced violin and estimation of its original dimensions.
Height of the sound box: now 35.4 cm - original c. 38 cm.

Given the paucity of written sources, the only way to improve our understanding of the violin family in
this period is to study the instruments themselves. Hence, we aim at developing a set of tools able to anal-
yse three-dimensional geometrical shapes acquired by photogrammetry. Our purpose is to differentiate ancient
reduced violins from ancient unreduced violins. Using their geometrical representation, we want to quantify
their specific characteristics, detect possible anomalies and, if applicable, reconstruct their original morphology.
Ultimately, we will classify a corpus of ancient violins according to these aspects, thanks to unsupervised and
supervised machine learning techniques.

Photogrammetry outputs point clouds and polygonal meshes, which are relatively large-scale and unstruc-
tured, hence are not the most suitable to apply standard classification techniques or models. Our first objective
is thus to identify mathematical models that are precise enough to describe the three-dimensional shape of our
digitised violins, but which are at the same time convenient for a classification purpose.

More precisely, we will focus mainly on the surface of the violin soundboard which we wish to represent as
a piecewise function. This function will correspond to the height of the soundboard with respect to a symme-
try plane of the violin (identified using Principal Component Analysis). The domain of this function will be
carefully computed from the photogrammetric point cloud and mesh, so that the graph corresponds only to
the upper part of the soundboard, eliminating the ribs (lateral parts). We will then apply different regression
techniques on the point cloud to compute the piecewise representations of the surface (such as linear regression,
B-splines, etc.), on a predefined partition of the domain, and use the coefficients of those fitted representations
to classify instruments with standard machine learning techniques. We will present preliminary results obtained
after performing photogrammetry on a collection of 40 ancient instruments taken from the Museum of Musical
Instruments, Brussels.
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Gromov–Wasserstein (GW) distances [2] are a generalization of Wasserstein distances and allow for a com-
parison and coupling of metric measure (mm-) spaces. Moreover, GW is invariant under certain distance
preserving transformations making them very appealing for applications such as shape matching and compar-
ison. However, calculating GW distances can be computationally challenging and things become even worse
when all pairwise distances of a set of mm-spaces are required such as e.g. for classification tasks. To alleviate
computing all pairwise distances in the Wasserstein context, the authors in [3] proposed a framework referred to
as linear optimal transport. This poster shows how to extend this approach to the Gromov–Wasserstein setting.
The main idea is to fix a reference space from which the GW is computed to all input spaces. The obtained
couplings can be used to define approximate couplings between the inputs. The resulting framework reduces
the number of GW computations from

(
N
2

)
to N when requiring the pairwise distances of N mm-spaces. We

provide numerical experiments highlighting that linear GW can be successfully used in classification tasks of 2d
and 3d shapes.

Joint work with: Robert Beinert, Gabriele Steidl
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Let φ : Rd → R be a continuous and symmetric function (i.e. φ(−x) = φ(x), x ∈ Rd), satisfying a suitable
decay condition for large ‖x‖, and define the shift-invariant space

S(φ) = {
∑

k∈Zd

ckφ(· − k) : (ck) ∈ `∞(Zd)}.

The problem of cardinal interpolation with the kernel φ is to find, for some data (yj)j∈Zd , a function s ∈ S(φ),
such that s(j) = yj , for all j ∈ Zd. If this problem admits a unique solution for any bounded data, it is known
that specific algebraic or exponential decay of the kernel φ is transferred to the corresponding Lagrange function
for cardinal interpolation on Zd, leading to a well-localized Lagrange representation of the solution s.

The first part of the talk presents a similar result obtained for the related problem of semi-cardinal inter-
polation, in which the multi-integer grid Zd is replaced by a half-space lattice H ⊂ Zd. Despite the loss of
shift-invariance in this case, we prove that the algebraic or exponential decay still carries over from φ to the
corresponding H-indexed family of semi-cardinal Lagrange functions, with constants that are independent of
the index j ∈ H (see [1]).

In the second part, we discuss two recent applications and refinements of the above results for the Matérn
kernel φ := φm,d, defined, for a positive integer m > d/2, as the exponentially decaying fundamental solution of
the elliptic operator (1−∆)m in Rd, where ∆ is the Laplace operator. Namely, for a scaling parameter h > 0,
we consider non-stationary interpolation to data prescribed on hZd from the flat ladder collection {Sh(φ)}h
generated by φ via

Sh(φ) = {
∑

k∈Zd

ckφ(· − hk) : (ck) ∈ `∞(Zd)}.

For this problem, we prove that the Lebesgue constant of the associated interpolation operator is uniformly
bounded as h → 0, which allows us to deduce the maximal L∞-convergence rate O(h2m) for the Matérn flat
ladder interpolation scheme (see [2]). On the other hand, if d = 1, then the translates of the Matérn kernel φm,1

span a linear space of exponential splines, for which we show that non-stationary semi-cardinal interpolation on
the scaled grid hZ+ achieves the convergence rate O(hm) in L∞(R+), amounting to half of the approximation
order of the corresponding cardinal scaled scheme.

Acknowledgements: This work was supported by Kuwait University, Research Grant No. SM01/18.
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We consider approximating capabilities of classes of neural networks whose weights belong to given finite sets
and present their statistical applications. In particular, the empirical risk minimizers over those classes, which
are always identifiable in a finite number of steps, can achieve good rates of estimation of unknown regression
functions.
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Finding the optimal hyperparameters of a model can be cast as a bilevel optimization problem, typically
solved using zero-order techniques such as grid search or random search. In this work we study first-order
methods when the inner optimization problem is convex but non-smooth. We show that the forward-mode
differentiation of proximal gradient descent and proximal coordinate descent yield sequences of Jacobians con-
verging toward the exact Jacobian. Using implicit differentiation, we show it is possible to leverage the non-
smoothness of the inner problem to speed up the computation. Finally, we provide a bound on the error made
on the hypergradient when the inner optimization problem is solved approximately. Results on regression and
classification problems reveal computational benefits for hyperparameter optimization, especially when multiple
hyperparameters are required. This work is illustrated in Figure 1 and is based on the following publications
[1, 2].
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Figure 1: 5-fold cross-validation error C(β(λ)): elastic net CV error with respect to λ1 and λ2 for multiple
hyperparameter optimization methods on the rcv1 dataset. Crosses represent the 25 first error evaluations for
each method.
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Deep learning had remarkable empirical success in recent years in solving a variety of inverse problems in
imaging, including image denoising, deblurring, tomographic image reconstruction, and image inpainting, just
to name a few. This has catalyzed an ongoing quest for precise characterization of correctness and reliability of
such data-driven methods in critical use-cases, e.g., those arising in medical imaging.

Notwithstanding the excellent empirical performance of data-driven methods for image reconstruction, con-
cerns have been raised regarding their stability, or lack thereof, with serious practical implications. In appli-
cations where imaging is used for discovering new scientific phenomena, it is important to have mathematical
guarantees to ensure the correctness and reliability of the reconstructed images.

In this talk, we will introduce different notions of convergence pertaining to image reconstruction problems
and provide a broad overview of recent data-driven techniques that satisfy some of those convergence properties.
In particular, the talk will focus on data-driven regularization methods through explicit functionals parametrized
by neural networks [1–5] and via plug-and-play deeply-learned denoisers [6, 7]. We will highlight the requisite
properties that such a regularization functional or a denoiser must satisfy to establish convergence guarantees
of different types.

Joint work with: Martin Burger, Marcello Carioni, Sören Dittmer, Sebastian Lunz, Subhadip Mukherjee,
Ozan Öktem and Zakhar Shumaylov
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Learning an unknown function f from given data observations is a dominant theme in data science. The
central problem is to use data observations of f to construct a function f̂ which approximates f away from the
data. There are numerous settings for this learning problem depending on (i) what additional information we

have about f , (ii) how we measure the accuracy of how well f̂ predicts f , (iii) what is known about the data
and data sites. The main theme of this talk is twofold:

• to determine the optimal performance possible (the smallest possible error of recovery) in a given learning
setting;

• to understand which discrete optimization formulations, when successfully numerically implemented, give
a (near) optimal solution to the learning problem.

The remaining step is then to give a viable numerical method with convergence guarantees and bounds on
computation which solves the discrete optimization formulation. It often remains an open question as to
whether a proposed numerical optimization strategy, such as gradient descent methods, actually converges in
the given learning setting to a near optimal solution.

This talk is concerned with evaluating how well an approximation f̂ performs and determining the best
possible performance among all choices of an f̂ . Given answers to these fundamental questions, one can then
turn to the construction of numerical procedures and evaluate their performance against the known best possible
performance.

Joint work with: Andrea Bonito, Ronald DeVore, and Guergana Petrova.
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Partial Differential Equations (PDEs) on arbitrary surfaces arise in many applied and natural science models.
A notable example of solving PDEs on static surfaces is image processing. Applications of PDEs on evolving
surfaces occur in material science and fluid dynamics. Additionally the fields of biology and computer graphics
have applications for PDEs on both static and evolving surfaces.
There are three main categories of methods for solving PDEs on arbitrary surfaces: the methods that rely (i)
on parametrization, (ii) on an embedding, and (iii) on triangulation. Embedding-type methods are quite simple
in that they are based on the discretization of standard R3 operators rather than curve or surface-specific
operators. One of the most common embedding methods is the closest point method (CPM), [1]. The surface
is enclosed inside a thick layer of nodes that belong to a dense three-dimensional grid. Each one of these nodes
takes the function value of the one associated with their closest point to the surface, implicitly imposing that
the normal derivatives at each node is null. Under that constraint, the surface Laplacian is equivalent to its R3

analog.
The Radial Basis Functions Orthogonal Gradients method (RBF-OGr) is another embedding method, and was
introduced in [2]. It benefits from the meshfree character of RBFs, which gives the flexibility to represent
complex geometries in any spatial dimension while providing a high order of accuracy. This method is different
from the CPM in that its computational domain is the point cloud that defines the manifold, instead of being
being a thick layer of nodes around the surface. Every computation is performed on the surface, including the
constraints of having null normal derivatives.
The fast RBF-OGr method [3] uses the finite-difference based RBF method, instead of the global standard RBFs
which gave rise to dense differentiation matrices, a limiting factor on the size of the point cloud representing the
surface. However, going from the global to the local RBF method have introduced a few sources of instabilities
in the process. In this presentation, we will address the different stability issues and provide solutions. We will
illustrate the procedure with a number of interesting examples.

Joint work with: C. Piret, C. Jacobs.
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This work investigates the recovery of a distribution of finite support, a complex measure µ =
∑s

j=1 cjδtj ,
where {t1, t2, . . . , ts} ⊂ [0,Λ] for some Λ > 0 and c ∈ Cs, from the (squared) magnitudes of a set of linear
functionals applied to µ. The linear functionals we use are obtained by evaluating µ̂, the Fourier transform

of µ, or by taking differences between point evaluations. We show that a choice of N ≥ 6(d+1)(1+6/ ln(s/ΛΩ))s

1−2
√
d−1/d

intensity samples is sufficient for injectivity of the measurement, where d is independent of the measure, and
0 < ΩΛ < 1/2. To establish this, we build on a construction method by Alexeev et al. [1] to obtain a sufficient set
of quantities that are linear in µ. A concrete recovery algorithm results in combination with an operator-based
Prony method [3] to recover the unknown support and the coefficient vector c, up to some residual ambiguity.
The noisy case is addressed as well, with methods based on prior results with Hammen [2].

This is joint work with: Ahmed Abouserie.
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The detection of discontinuity curves of bivariate functions (and of their gradients) is an important problem
that arises in many contexts, ranging from surface and scattered data reconstruction to edge detection in image
and geometric processing, see for example [1, 3] and references therein. We present a fault detection method
based on the so-called null rules, computed as a vector in the null space of certain collocation matrices [4].
These rules are used as weights in a linear combination of function evaluations to indicate the local behavior
of the function itself. By analyzing the asymptotic properties of the rules, we introduce two indicators (one for
faults and one for gradient faults) by locally computing just one rule with degree of precision 2. This leads to
a cheap and reliable scheme, which allows us to effectively detect and classify points close to discontinuities.
We then show how this information can be suitably combined with adaptive approximation methods based on
hierarchical spline spaces [5, 2] in the reconstruction process of surfaces with discontinuities. The considered
adaptive methods exploit the ability of the hierarchical spaces to be locally refined, and the fault detection is a
natural way to guide the refinement with low computational cost. Several numerical tests will be presented in
order to show the behavior of the proposed methods.

Joint work with: Francesco Calabrò, Carlotta Giannelli.
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Spherical Fibonacci Points: Hyperuniformity, and more

Johann S. Brauchart
Graz University of Technology

j.brauchart@tugraz.at

One way of explicitly constructing point sets on the unit sphere in R3 is to map a suitable set in the unit
square to the sphere by means of an area-preserving Lambert transformation.

Using the example of the Fibonacci lattice in the unit square, we study properties of its spherical analogue.
In particular, we consider hyperuniformity aspects (cf. [1, 2]).

Joint work with: Josef Dick (UNSW, Yuan Xu (University of Oregon).
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The mean curvature flow is an emblematic geometric flow which is very naturally related to various numerical
and physical applications, e.g. in image / data processing or in material sciences. The talk will be devoted to
new, efficient, and accurate numerical methods based on neural networks for the approximation of the mean
curvature flow of either oriented or non-orientable surfaces [1]. To learn the correct interface evolution law, the
neural networks are trained on phase field representations of exact evolving interfaces. The structure of the
networks draws inspiration from splitting schemes used for the discretization of the Allen-Cahn equation. But
when the latter approximates the mean curvature motion of oriented interfaces only, the proposed approach
extends very naturally to the non-orientable case. In addition, although trained on smooth flows only, the
proposed networks can handle singularities as well. Furthermore, they can be coupled easily with additional
constraints. Various applications will be shown to illustrate the flexibility and efficiency of our approach: mean
curvature flows with volume constraint, multiphase mean curvature flows, numerical approximation of Steiner
trees, numerical approximation of minimal surfaces.

Joint work with: Elie Bretin, Roland Denis, Garry Terii.
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In compressive sensing and sparse recovery, a wide class of popular measurement schemes can be analyzed
within the framework of randomly sampled bounded orthonormal systems. This setting includes random mea-
surement matrices such as subsampled isometries, partial Fourier matrices, and sampling matrices associated
with orthogonal polynomials. All these random measurement matrices are formed by independent, identically
distributed, and uniformly bounded rows with trivial covariance.

Despite the generality of this framework, the orthogonality assumption is too restrictive in applications
where the sampling matrix does not have trivial covariance. In this talk, we will discuss how to address this
issue by working in the framework of randomly sampled bounded Riesz systems proposed and studied in [1].
Relaxing the orthogonality assumption, this leads to a wider class of structured random measurement matrices
having independent, identically distributed, and uniformly bounded rows with nontrivial covariance.

The main theoretical tool of our analysis is a new upper bound for the expectation of the supremum of
a Bernoulli process associated with the restricted isometry constant of the random matrix of interest. Using
this bound, we will illustrate a restricted isometry analysis that (i) extends previous results from bounded
orthonormal to bounded Riesz systems and (ii) improves the dependence of the sample complexity estimate on
the restricted isometry constant while keeping the number of logarithmic factors equal to the best currently
known one. In addition, we will show a robust null space property analysis in bounded Riesz systems, an
application to local coherence-based sampling schemes, and discuss the extension to the weighted sparsity
setting.

Going beyond orthogonality, the additional flexibility of bounded Riesz systems allows for applications to
a wider class of problems. Here, we will illustrate applications in scientific computing such as function ap-
proximation in high dimensions and numerical methods for partial differential equations, including compressive
Petrov-Galerkin and spectral collocation methods.

Joint work with: Sjoerd Dirksen (Utrecht University), Hans C. Jung (DeepL), Holger Rauhut (RWTH
Aachen University), Weiqi Wang (Concordia University)
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In this talk I will show that “Adversarial Training” [1]—a methodology designed for the training of adver-
sarially robust classifiers—is equivalent to a variational regularization problem involving a nonlocal perimeter
term. Using this structure one can show that adversarial training admits a convex relaxation which is remi-
niscent of the Chan-Esedoglu model from image denoising [2]. Furthermore, this allows to prove existence of
solutions and study finer properties and regularity. Finally, I hint at how to modify adversarial training to an
Almgren-Taylor-Wang [3] like scheme for mean curvature flow.

Joint work with: Nicolás Garćıa Trillos, Ryan Murray.
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Signal smoothing is a relevant topic in many applications, such as image processing in biomedicine [1],
and geology [2]. Previous work has proposed denoising methods tailored to the input signal, such as external
learning applied to 2D images [3], diffusive methods applied to volumetric images [4], wavelets applied to vector
fields [5], and low-rank methods applied to 2D videos [6].

We propose a novel framework [7] for the smoothing of arbitrary signals, which combines regularisation with
learning-based models and is general with respect to the input signal, the noise type (e.g., speckle, Gaussian
noise), the selected regulariser/denoising (e.g., SVD - Singular Values Decomposition, block matching), and
the learning architecture (e.g., network’s weights optimisation). Given a data set of ground-truth signals, we
apply an artificial noise and extract data groups with high similarity. For an arbitrary signal, we apply a
regularisation and compute the parameters that allow us the best reconstruction of the ground-truth signal
from the regularised signal. Then, the data groups (e.g., the 3D blocks of the block-matching algorithm) are
aggregated to reconstruct the smoothed signal. We iterate this approach, where the input signal of each iteration
is the smoothed signal at the previous step. The input and optimal parameters compose the training data set,
which is used to train a learning model to predict the optimal coefficients of the regularisation.

As example, we apply the SVD to images, where the optimal coefficients to be predicted are the threshold
values of the shrinkage of the singular values. After the optimisation of the weights of the learning-based
network, the trained models are used to smooth images with a different noise, such as 2D/3D ultrasound images
affected by speckle noise, or synthetic images and videos with Gaussian noise.

Joint work with: Paolo Nicolardi, Giuseppe Patané.

Keywords: Image and signal Processing, Smoothing, Computer Graphics, Life Sciences.

References

[1] Zhang, Ju, and Yun Cheng: Despeckling Methods for Medical Ultrasound Images. In: Springer, 2020.

[2] Zhan, Yunjun and Dai, Tengda and Huang, Jiejun and Dong, Yusen and Ye, Fawang and Tang, Cong
Double iterative optimal dictionary learning-based SAR image filtering method. In: Signal, Image and
Video Processing.

[3] Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. In:
Trans. on Image Processing 22(4),1620–1630 (2012), IEEE.
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The advent of P-splines, first introduced by Eilers and Marx in 2010 (see [4]), has led to important de-
velopments in data regression through splines. With the aim of generalizing polynomial P-splines, in [1] we
have recently defined a model of penalized regression spline, called HP-spline, in which polynomial B-splines
are replaced by hyperbolic-polynomial bell-shaped basis functions, and a suitably tailored penalization term
replaces the classical second-order forward difference operator.

HP-splines inherit from P-splines all model advantages and extend some of them. Indeed, they separate
the data from the spline knots -so avoiding overfitting and boundary effects-, exactly fit exponential data, and
conserve two type of ‘exponential’ moments.

HP-splines are particularly interesting in applications that require analysis and forecasting of data with
exponential trends: the starting idea of this work is the definition of a polynomial-exponential smoothing spline
model to be used in the framework of the Laplace transform inversion as done in [2, 3].

The talk discusses the existence, uniqueness, and reproduction properties of HP-splines, and provides several
examples supporting their effective usage in data analysis.

Joint work with: Costanza Conti.
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In Geometric Design, it is of interest the representation of curves and surfaces that are aesthetically pleasing.
In order to have a notion amenable to implementation in CAGD, aesthetic curves have been defined as those
with monotonic curvature and, for spatial curves, monotonic torsion. There are several approaches to obtain
aesthetic Bézier curves, but we will follow the lead of [4] and [3].

In [4], Mineur, Lichah, Castelain and Giaume obtain the edges of the control polygon of a planar Bézier
spiral by a rotation and a dilation of the previous edge in the control polygon of the curve, what the authors
name typical curve. Certain relations between the scaling factor and the rotation angle give rise to aesthetic
Bézier spirals starting with any initial edge of the control polygon and for any degree of the Bézier curve.

Inspired by this work, in [3] Farin extends the method by considering Bézier curves whose control polygon
is obtained by the action of a given matrix on the previous edge of the control polygon. His insight is to exploit
the invariance of the curvature and torsion under subdivision to give some conditions on the matrix and its
singular values that give rise to aesthetic Bézier curves for any initial edge, what he calls Class A matrices and
Class A Bézier curves.

However, counterexamples to Farin’s conditions have been produced (see [2] and [5]), that is, matrices for
which these conditions hold but they do not generate curves with monotonic curvature. Moreover in [2], Cao
and Wang give conditions on the eigenvalues of a (2 × 2 or 3 × 3) symmetric matrix that generates an aesthetic
(planar or spatial) Bézier curve.

In this talk, we present a simple explicit formula for the curvature of planar Bézier curves generated by
Farin’s method. This formula is easily obtained by the invariance under subdivision property and from it there
can be derived conditions on the eigenvalues of a general matrix and the initial edge of the control polygon
that give rise to aesthetic Bézier curves. This approach gives a common framework to the previous works and
recovers the results in [4] and [2] as particular cases. For more details we refer to [1].

Joint work with: Leonardo Fernández-Jambrina, Maŕıa Jesús Vázquez-Gallo.
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We discuss polynomial approximations of nonnegative Radon measures supported on arbitrary domains of
the d-dimensional torus, given moments up to some degree n. We introduce new estimates, that can be computed
from the truncated moment matrices of the measures and provide complementary recovery guarantees.

Our first estimate for a measure µ is given by the convolution of µ with the Fejér kernel. A similar con-
struction was also considered in [1]. The resulting trigonometric polynomial can be evaluated efficiently on a
grid using only Fast Fourier Transforms. We establish sharp bounds on the rate of convergence of this proxy
towards µ with respect to the Wasserstein-1 distance. Second, we introduce a certifying polynomial, that can
identify exactly the Zariski closure of the support at finite degrees. This polynomial can be computed from
the singular value decomposition of the moment matrix, and we show that it converges pointwisely towards the
characteristic function of the support.

Joint work with: Mathias Hockmann, Stefan Kunis, Markus Wageringel.
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In this contribution we propose an enhanced version of the residual sub-sampling method (RSM) in [1] for
adaptive interpolation by radial basis functions (RBFs). More precisely, we introduce in the context of sub-
sampling methods a maximum profile likelihood estimation (MPLE) criterion for the optimal selection of the
RBF shape parameter. This choice is completely automatic, provides highly reliable and accurate results for
any RBFs, and, unlike the original RSM, guarantees that the RBF interpolant exists uniquely. The efficacy of
this new method, called MPLE-RSM, is tested by numerical experiments on some 1D and 2D benchmark target
functions.

Joint work with: Alessandra De Rossi.
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Geometric modeling of developable surfaces is an actively researched topic, with important practical appli-
cations ranging from manufacturing and architecture, to art and paper-craft or origami. In particular, there
still exists a demand for an intuitive design paradigm for composite piecewise C2-smooth developable surfaces,
which decompose into ruled pieces and planar patches. Such a type of surface can be equivalently characterized
in several forms, such as:

• defined as torsal ruled surfaces; that is, surfaces containing at least one parametric family of lines, with
constant tangent planes along such lines;

• through the theory of isometric mappings, by being mapped to local planar domains;

• surfaces with a singular shape operator; or, equivalently, exhibiting zero Gaussian curvature.

Each of these definitions has been the motivation for new classes of discrete developable meshes in recent
work [1, 2]. We review some of these, propose a novel one, and explore related tools for interactive manipulation,
such as handle deformation, curve folding, cutting and gluing, and others.

Figure 1: Recent advances in geometric modelling of developable
surfaces have produced methods to approximate reference surfaces with piece-

wise developables (left) and with curve-pleated surfaces (right) [2, 3].

Joint work with: Florian Rist, Johannes Wallner, Helmut Pottmann
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We discuss a new method for the generation of locally refined finite element meshes using convolutional
neural networks. As a model problem we consider a linear elasticity problem on a two-dimensional domain with
holes that has a polygonal boundary.

When applying a Galerkin discretization using quadrilateral finite elements, one usually has to perform
adaptive refinement to properly resolve maxima of the stress distribution. Such an adaptive scheme requires a
local error estimator and a corresponding local refinement strategy, which leads to a high computational cost.
We propose to reduce the complexity of obtaining a suitable discretization by training a neural network whose
evaluation replaces the adaptive refinement procedure.

The resulting displacement and distribution of stresses depend on the geometry of the domain and on the
boundary conditions. We train a neural network on a large class of possible domains and boundary conditions
from different classes of geometric complexity and we analyze its behavior on unseen data.

In order to process the geometry data independently of the underlying discretization scheme, we interpret
computational domain and boundary conditions as pixelated images. Likewise, the output of the networks is an
grayscale image that predicts the optimal local mesh density distribution. Besides the increased flexibility, this
representation makes it possible to employ powerful network architectures based on convolutional networks.

Joint work with: Chiu Ling Chan, Thomas Takacs.
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We study vertex sparsification for distances, in the setting of planar graphs with distortion: Given a planar
graph G (with edge weights) and a subset of k terminal vertices, the goal is to construct an ε-emulator, which
is a small planar graph G′ that contains the terminals and preserves the distances between the terminals up to
factor 1 + ε.

We design the first ε-emulators for planar graphs of linear size k/εO(1). In terms of k, this is a dramatic
improvement over the previous quadratic upper bound of Cheung, Goranci and Henzinger [ICALP 2016], and
breaks below known quadratic lower bounds for exact emulators (the case when ε = 0). Moreover, our emulators
can be computed in near-linear time, with applications to fast (1 + ε)-approximation algorithms for basic
optimization problems on planar graphs such as minimum (s, t)-cut and diameter.

A central technical contribution is to carry out a spread reduction for the all-terminal-pairs shortest path
problem when the input graph is planar and the terminals all lie on the outerface (called a one-hole instance); the
spread is defined to be the ratio between the largest and the smallest distances between terminals. To construct
an emulator for a one-hole instance G we adapt a recursive split-and-combine strategy. We will attempt to
split the input instance into multiple one-hole instances along some shortest paths that distribute the terminals
evenly. Every time we slice the graph G open along a shortest path P , we compute a small collection of vertices
on P called the portals, that approximately preserve the distances from terminals in G to the vertices on P .
We need the portals to be dense enough so that only a small error term will be added to the distortion of the
emulator after the gluing; at the same time, the number of portals cannot be too large, as they are added to
the terminal set, causing the number of terminals per piece to go down slowly and creating too many pieces.
Even when the original input has a polynomial spread to start with, in general we cannot control the spread of
all the pieces occurring during the split-and-combine process. Thus new ideas are needed. To this end we prove
a combinatorial lemma counting the sum of degrees of big faces in the arrangement of non-crossing shortest
paths within a disk.

Joint work with: Zihan Tan and Robert Krauthgamer.
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Barycentric coordinates provide a simple way of expressing the linear interpolant to data given at the
vertices of a triangle and have numerous applications in computer graphics and other fields. The generalization
of barycentric coordinates to polygons with more than three vertices is not unique and many constructions have
been proposed [3]. Among them, mean value coordinates in [2] stand out by having a simple closed form and
being well-defined for arbitrary polygons, but they may take on large negative values in the case of concave
polygons, leading to artefacts in applications like shape deformation (see Fig. 1).

We present a modification of mean value coordinates [1] that is based on the observation that the mean
value coordinates of some point v inside a polygon can be negative if the central projection of the polygon
onto the unit circle around v folds over. By iteratively smoothing the projected polygon and carrying over this
smoothing procedure to the barycentric coordinates of v, these fold-overs as well as the negative coordinate
values and shape deformation artefacts gradually disappear, and they are guaranteed to completely vanish after
a finite number of iterations.

source k = 0 k = 1 k = 2 k = 3 k = 4

Figure 1: Deformation of a source image (left), obtained by moving six vertices (blue) of the control polygon. The
deformation based on mean value coordinates (k = 0) exhibits severe artefacts, caused by negative coordinate
values. Using iterative coordinates, these deformation artefacts gradually disappear as the number of iterations
increases (k = 1, 2, 3, 4).

Joint work with: Chongyang Deng, Kai Hormann.
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In finite-dimensional spaces, frames that allow phase retrieval are stable, with a finite stability constant;
yet when one considers nested hierarchies of finite-dimensional approximation spaces these constants tend to
infinity as the dimension grows, possibly suffering a “curse of dimensionality”, i.e. growth may be exponential in
the dimension. In this talk, we will consider the locally stable phase retrieval for frames in infinite-dimensional
or finite-but large-dimensional Banach spaces. To study the local stability of phase retrievable signals, we
introduce the notion of “locally stable and conditionally connected” (LSCC) measurement scheme associated
with frames. We then characterize the phase retrieval stability of the signal by two measures that are commonly
used to quantify the connectivity of the graph: the Cheeger constant and the algebraic connectivity.

Joint work with: Ingrid Daubechies, Nadav Dym, Jianfeng Lu.
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Given a positive integer d and a(1), . . . ,a(m) m vectors in Rd, {k1a(1) + · · ·+kma(m) : k1, . . . , km ∈ Z} ⊂ Rd

is the so-called lattice generated by the family of vectors, or by the matrix A = (a(1)| . . . |a(m)) ∈ Rd×m. In
high dimensional integration, prescribed lattices are used for constructing reliable quadrature schemes. The
quadrature points are the lattice points lying on the integration domain, typically the unit hypercube [0, 1)d or
a shifted hypercube. It is crucial to be able to enumerate the lattice points in such domains inexpensively. Un-
deniably, the lack of fast enumeration procedures hinders the applicability of lattice rules. Existing enumeration
procedures exploit intrinsic properties of the lattice at hand, such as Z-periodicity, orthogonality, recurrences,
etc, e.g. [1, 2, 3, 4]. We present a general-purpose lattice enumeration strategies based on linear programming,
[5]. We demonstrate how to combine duality and parametric linear programming in order to accelerate these
strategies, producing performances comparable to the enumeration strategies that are fine-tuned to special lat-
tices. In addition, we discuss a variety of relaxation and reduction techniques that allow further acceleration of
the introduced algorithms. Numerical experiments in high dimension are also presented.
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A linear-time algorithm for computing a point on a polynomial or rational curve in Bézier form with good
geometric and numerical properties has been recently given in [2]. This approach has also found applications in
accelerating the evaluation of Bézier surfaces and even B-spline curves (for details, see [1]). We show that the

method proposed in [2] can be generalized to efficiently compute the quantities R′
n(t), R′′

n(t), . . . , R
(k)
n (t), where

Rn is a d-dimensional rational Bézier curve of degree n and t ∈ [0, 1]. Moreover, the algorithm may be adapted
for a more general family of rational parametric objects. Some remarks are given about applying it to Bézier
surfaces.

Joint work with: Pawe l Woźny (Institute of Computer Science, University of Wroc law, Poland)
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Tikhonov Regularization of Circle-Valued Signals

Laurent Condat
King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

contact: see webpage https://lcondat.github.io/

It is common to have to process signals or images whose values are cyclic and can be represented as points
on the complex circle, like wrapped phases, angles, orientations, or color hues. We consider a Tikhonov-type
regularization model to smoothen or interpolate circle-valued signals defined on arbitrary graphs. We propose
a convex relaxation of this nonconvex problem as a semidefinite program, and an efficient algorithm to solve it.

Let S = {z ∈ C : |z| = 1} denote the complex unit circle. We want to estimate a signal x = (xn)n∈V ,
with values xn ∈ S, defined on an undirected graph (V, E), where V is the set of nodes and E is the set of
edges, which are sets of two distinct nodes. Typically, we are given a noisy signal y = (yn)n∈V defined on the
same graph and the sought signal x is a smoothed, or denoised, version of y, which achieves a tradeoff between
closeness to y and smoothness, in some sense.

For real-valued signals, Tikhonov-regularized smoothing consists in solving the following convex problem:
given y = (yn)n∈V and nonnegative weights (wn)n∈V and (λn,n′){n,n′}∈E , x = (xn)n∈V is the solution to

minimize
xn∈R : n∈V

∑

n∈V

wn

2
(xn − yn)2 +

∑

{n,n′}∈E

λn,n′

2
(xn − xn′)2. (1)

We formulate a similar problem for signals x and y with values in S. For this, we adopt a Bayesian view and
replace the Gaussian distribution, whose anti-log-likelihood gives the squared differences in (1), by the von
Mises distribution. This yields the nonconvex problem

minimize
xn∈S : n∈V

∑

n∈V

wn

(
1 − ℜ(xny∗

n)
)

+
∑

{n,n′}∈E

λn,n′
(
1 − ℜ(xnx∗

n′)
)
, (2)

where ℜ denotes the real part and ·∗ denotes the complex conjugation. The main contribution of this work
is a new convex relaxation of this nonconvex problem, which takes the form of linear minimization over the
product of complex elliptopes. It originates from a fomulation using optimal transport of measures on the circle,
parameterized by a finite number of their Fourier coefficients [2]. The benefits of the proposed approach will be
illustrated with numerical experiments, like the one in Figure 1. This work is described in [1].

[1] L. Condat, “Tikhonov Regularization of Circle-Valued Signals,” preprint arXiv:2108.02602, 2021.
[2] L. Condat, “Atomic norm minimization for decomposition into complex exponentials and optimal transport
in Fourier domain,’ Journal of Approximation Theory, vol. 258, Oct. 2020.
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Figure 1: Denoising of a circle-valued image: (a) the ground-truth image, (b) the noisy image, (c) the image
denoised with the proposed method, for which the convex relaxation is exact: the image is the exact solution
of the nonconvex problem. All images have their values in S, whose argument in (−π, π] is displayed using a
cyclic colormap.
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Multiple Multiresolution Analysis for Image

Compression

Mariantonia Cotronei
Università Mediterranea di Reggio Calabria, Italy

mariantonia.cotronei@unirc.it

We present a technique for compressing images based on their multiple multiresolution decomposition. As
an extension of standard wavelet and wavelet-like approaches, in a multiple multiresolution analysis data are
processed with a tree of filterbanks consisting of filters and decimation matrices that can vary depending on
the level. Our algorithm takes advantage of the redundancy in the transformed image by employing an efficient
selection strategy of the portion of coefficients to be kept while still retaining most of the energy of the data.
Furthermore, our method is able to capture the peculiar anisotropic information of the image while maintaining
a low implementation complexity thanks to an efficient filterbank implementation and to the possibility of
expressing the employed 2-D filters in an almost separable aspect [1, 2].

Joint work with: Dörte Rüweler and Tomas Sauer (Univertität Passau, Germany).
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Negative curvature obstructs acceleration for

geodesically convex optimization, even with exact

first-order oracles

Christopher Criscitiello
EPFL, Switzerland

christopher.criscitiello@epfl.ch

Optimization on nonlinear manifolds has applications in many areas, including machine learning, statistics,
robotics, imaging and even computational complexity theory. We show that when the underlying manifold is
negatively curved, optimization can be more difficult than in (flat) Euclidean spaces. The talk will provide a brief
introduction to manifolds, curvature, optimization on manifolds and its applications, and Nesterov’s accelerated
gradient method in Euclidean spaces. We will then present our main results, which show that acceleration (in the
sense of Nesterov’s accelerated gradient method) is unachievable in a large class of negatively curved Riemannian
manifolds when the algorithm receives exact gradient and function value information. Our work builds on the
recent work of Hamilton and Moitra [1] who show that acceleration on the class of strongly geodesically convex
functions is unachievable in the hyperbolic plane when the algorithm receives gradients and function values
corrupted by a small amount of noise.

Joint work with: Nicolas Boumal.
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Blending lower-dimensional sparse interpolants

Annie Cuyt
University of Antwerp
Antwerpen, Belgium

annie.cuyt@uantwerpen.be

Multi-dimensional sparse interpolation, as presented in [2], works very well when the underlying physical
phenomenon f(X), X = (x1, . . . , xd) truly behaves according to the model

f(X) =
n∑

j=1

αj exp(〈φj , X〉), φj = (φj1, . . . , φjd) ∈ Cd, 〈φj , X〉 =
d∑

k=1

φjkxk

on the whole d-dimensional space. However, in some particular cases, such as in [1], this model only holds for
lower-dimensional subspaces and thus the method discussed in [2] cannot be applied.

Since the exponential model does hold on lower-dimensional subspaces, one can take advantage of this to
develop a new strategy. We propose to blend the lower-dimensional models into one large model for the whole
space.

Joint work with: Ferre Knaepkens (University of Antwerp, Belgium).
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Image Segmentation Using Hidden Markov Models and

convolutional neural network

DALIMI Hanane
Departement of physics, University Hassan II Casablanca

hanane.dalimi@gmail.com

� Artificial neural networks (ANNs) reflect the behavior of the human brain, allowing computer programs
to recognize patterns and solve common problems in the fields of Artificial Intelligence. Bayesian meth-
ods have been applied in recent years to neural networks by various authors MacKay1992, MacKay92,
Neal1992, Mangi2018, Zhaoying2020, Gao2021.In this work, We propose to use hidden Markov model
(HMM) to weight the fields and finally use convolutional neural network (CNN) segment images. Promis-
ing experiment results are achieved on the RGB-D images.

Joint work with: AFIFI Mohames, AMAR Said.
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Quadrilateral mesh create from a given cross field

Kokou Dotse, Vincent Mouysset, Sébastien Pernet
ONERA
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Figure 1: Representation of quadrilateral meshes from two different cross fields

Several high precision schemes with excellent quality and efficiency properties are built on quadrilateral
meshes. However, the automatic generation of quadrilateral meshes with good quality elements is still a chal-
lenge. The method proposed in the article is of great interest with a final mesh structured by block, respecting
the geometry and with good quality elements. However, it has some limitations, such as its unable to produce
on very stretched geometries or on some domains without corners (for example, a 2D ring), a valid cross field
which is the main notion on which the method is based. On the other hand, the variant of the Ginzburg-landau
theory presented in [2] does not allow to deal with non-simply connected domains. In our work, we propose a
new point of view allowing to solve the above mentioned limitations while keeping the structured aspect of the
mesh and opening other possibilities on the generation of the cross field. To do this, our idea is to abstract,
within the method, the generation of the cross-fields from the rest of partitioning process. We give ourselves a
representation field which we then process in order to obtain a partitioning in blocks of 4 sides. We thus obtain
different meshes according to the initial representation field.

More concretely, let Ω be a bounded domain and ∂Ω its boundary. We have Ω = ∪iΓi when Ω is a non-
simply connected domain and Γi, ∀i denotes the connected components of ∂Ω. We give ourselves a cross field
uc such that deg(uc, ∂Ω) = deg(Nc, ∂Ω) where Nc is the cross field associated with the normal of ∂Ω, [2] and
deg(uc, ∂Ω), deg(Nc, ∂Ω) denote the Brouwer degrees of uc and Nc on ∂Ω respectively. We then look for a
field of angle ϕ on ∂Ω in order to align uc on Nc by the rotation of angle ϕ of uc. Our calculation of ϕ is
inspired by the work presented in [2]. It consists in continuously propagating through the domain the angular
difference between Nc and uc which will allow to rectify the initial field and to align it on Nc. We strengthen this
correction by introducing a new field w characterized by the formula deg(w,Γi) = deg(Nc,Γi)− deg(uc,Γi), ∀i.
The introduction of this new field w is necessary when the initial cross field uc does not respect the degree
hypotesis presented above. This is especially the case when Ω is a non-simply connected domain where the
Brouwer degree hypothesis is not necessarily respected on each connected component of ∂Ω.

Our reformulation keeps the interesting property of producing structured block meshes while allowing to benefit
from cross fields coming from the user. In our presentation, we will detail our reinterpretation and explain our
argument with some algorithms, and then show the contribution of our point of view through several examples.
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A framework for bilevel optimization that enables

stochastic and global variance reduction algorithms

Mathieu Dagréou
Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France

mathieu.dagreou@inria.fr

Bilevel optimization, the problem of minimizing a value function which involves the arg-minimum of another
function, appears in many areas of machine learning such as hyperparameter selection [4], neural architecture
search [3] or Deep Equilibrium Networks [1]. In a large scale setting where the number of samples is huge, it is
crucial to develop stochastic methods, which only use a few samples at a time to progress.

However, computing the gradient of the value function involves solving a linear system, which makes it
difficult to derive unbiased stochastic estimates. To overcome this problem we introduce a novel framework, in
which the solution of the inner problem, the solution of the linear system, and the main variable evolve at the
same time. These directions are written as a sum, making it straightforward to derive unbiased estimates. The
simplicity of our approach allows us to develop global variance reduction algorithms, where the dynamics of all
variables is subject to variance reduction.

In this framework, we propose SOBA, a natural extension of stochastic gradient descent, and SABA, a
natural adaptation of the variance reduction algorithm SAGA [2]. We demonstrate that SABA has O( 1

T )
convergence rate, and that it achieves linear convergence under Polyak- Lojasciewicz assumption. This is the first
stochastic algorithm for bilevel optimization that verifies either of these properties. Numerical experiments on
hyperparameter selection for `2-regularized logistic regression (Figure 1) validate the usefulness of our method.
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Figure 1: Suboptimality gap for hyperparameter selection for `2 penalized logistic regression on IJCNN1 dataset

Joint work with: Pierre Ablin, Samuel Vaiter, Thomas Moreau.
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Spherical cap discrepancy of perturbed lattices under
the Lambert projection

Damir Ferizović
KU Leuven

damir.ferizovic@kuleuven.be

Given any full rank lattice Λ ⊂ R2 and a natural number N , we regard the point set Λ/N ∩ (0, 1)2 under
the Lambert map to the unit sphere S2, and show that its spherical cap discrepancy is at most of order N ,
with leading coefficient given explicitly and depending on Λ only. The proof is established using a lemma that
bounds the amount of intersections of certain curves with fundamental domains that tile R2, and even allows
for local perturbations of Λ without affecting the bound, proving to be stable for numerical applications. A
special case yields the smallest constant for the leading term of the cap discrepancy for deterministic algorithms
up to date.
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From (β, γ)-Chebyshev functions of the interval to

(β, γ)-Lissajous curves of the square

Francesco Marchetti
Dipartimento di Matematica “Tullio Levi-Civita” - Università degli Studi di Padova

francesco.marchetti@math.unipd.it

Chebyshev polynomials are a classical topic in scientific literature, and they have been considered in many
fields of research. For example, the related zeros are particularly suitable for polynomial interpolation on the
interval [−1, 1] due to their well conditioning. Moreover, the extrema of Chebyshev polynomials, along with
the set {−1, 1}, form the set of Chebyshev-Lobatto (CL) points, which are quasi-optimal interpolation nodes
as well [1, 2]. In [3], we introduced and analysed a new class of (β, γ)-Chebyshev functions and points, which
can be seen as a generalisation of classical Chebyshev polynomials and points (see Figure 1). The achieved
theoretical findings have been employed in [4] for reducing the effects of both Runge’s and Gibbs phenomena,
in the framework of the fake nodes approach [5].
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Figure 1: Left: an example of Chebyshev polynomial (solid line), Chebyshev points of the first kind (blue circles)
and CL points (red crosses). Centre and right: two examples of (β, γ)-Chebyshev functions (solid line), (β, γ)-
Chebyshev points (blue circles) and (β, γ)-CL points (red crosses). Depending on the choice of the parameters,
they can be symmetric or not with respect to the origin.

In the square [−1, 1]2, unions of tensor-product Chebyshev grids provide sets of nodes that guarantee a
stable polynomial interpolation process and that can be characterised as self-intersection or square-tangency
points of Lissajous curves [6]. This paves the way for the study of (β, γ)-Chebyshev grids and for the analysis
of polynomial approximation schemes along (β, γ)-Lissajous curves in [−1, 1]2, in view of designing a unified
generalised framework.

Joint work with: Stefano De Marchi, Giacomo Elefante.
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Manifold rewiring for unlabeled imaging in large noise

Valentin Debarnot
Univerty of Basel

valentin.debarnot@unibas.ch

In X-ray tomography the task is to reconstruct an unknown density from its projections in a number
of directions. Stable recovery requires a sufficient number of projections and the knowledge of the relative
projection angles. In some applications, however, projection angles are unknown; an important example is single-
particle Cryo-EM. With small or moderate noise it is relatively straightforward to infer the viewing directions
in Cryo-EM [1]. As the noise increases, direction recovery becomes hard. We propose a general graph-learning
framework to recover unknown parameters in Cryo-EM-like problems where the unknown quantity (such as
viewing direction) has a manifold structure.

Concretely, let M denote a smooth manifold and µ ∈ P1(M) a probability measure on M. We observe
(very) noisy measurements through a function f : M → RN ,

yi = f(θi) + ηi, (1)

where θi
i.i.d.∼ µ, and ηi

i.i.d.∼ N (0, σ2IN ) is a Gaussian random vector. Put differently, we observe yi
i.i.d.∼ ν where

ν
def.
= f#µ ⋆N (0, σ2IN ), f#µ denotes the pushforward of µ by f , and ⋆ is the convolution of measures.
Fig. 1 shows an embedding of 3D Cryo-EM projections. The underlying metric quotients out the so-called

in-plane rotations so the embedding lives on SO(3)/S1 ≃ S2 rather than SO(3) [2]. The function f corresponds
to the 3D X-ray transform and the underlying manifold is M = S2 , see Fig. 1a. In the absence of noise, the
parameters (θi)i on the sphere can be deduced from the graph Laplacian embedding of the measurements (yi)i;
Fig. 1b. For large noise, the graph Laplacian embedding collapses and the relative position of the observation
cannot be deduced; Fig. 1c.

This is because the noisy neighborhood graph contains false and misses true links. We propose to use the
recent WalkPooling neural network architecture [3] to denoise the K-NN graph. The WalkPooling architecture
captures the topological properties of M by learning to construct graphs from points sampled from the distri-
bution µ. This leads to significant improvements in embedding quality and enables reconstruction at extreme
noise levels; Fig. 1d.

(a) Underlying manifold: S2. (b) Noiseless embedding. (c) Noisy embedding(0dB). (d) WalkPooling (0dB).

Figure 1: Single particle 3D cryo-EM motivation example: the measurments are function of parameters in
S2. The Graph-Laplacian embedding allows to retrieve the relative position of each projection only using
WalkPooling to denoise the graph.

Joint work with: Ivan Dokmanić, Vinith Kishore, Cheng Shi.
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Blind inverse problems with isolated spikes

Valentin Debarnot
Univerty of Basel
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Assume that an unknown integral operator living in some known subspace is observed indirectly, by eval-
uating its action on a discrete measure containing a few isolated Dirac masses at an unknown location. Is
this information enough to recover the impulse response location and the operator with a sub-pixel accuracy?
We study this question and bring to light key geometrical quantities for exact and stable recovery. We also
propose an in depth study of the presence of additive white Gaussian noise. We illustrate the well-foundedness
of this theory on the challenging optical imaging problem of blind deconvolution and blind deblurring with
unstationary operators.

This work is based on the preprint [1].

Joint work with: Pierre Weiss.
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A checkerboard pattern approach to isothermic surfaces
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A checkerboard pattern is a quadrilateral net with Z2 combinatorics where every second face is a parallelo-
gram. Such a mesh can be easily obtained through midpoint subdivision from a general quadrilateral net. The
structure of a checkerboard pattern is very suitable to describe discrete differential geometric properties of the
net. In particular, we can use it to consistently define conjugate nets, principal curvature nets, a shape operator
and Koenigs nets.

We find that the class of discrete principal curvature nets is invariant under Möbius transformations and
can be studied in the projective model of Möbius geometry. Koenigs nets are exactly those nets that allow
a discrete dualization. Analogously to the smooth case, they can be characterized by the existence of certain
osculating conics (compare [1]) or by the equality of their Laplace invariants.

Isothermic nets can then be characterized as Koenigs nets that are also principal curvature nets. Again we
can transform them using the Möbius transformation or dualization. The combination of both allows us to
easily create examples of discrete minimal surfaces and their Goursat transformations.

Figure 1: A checkerboard pattern created by midpoint subdivision. Every black face is a parallelogram.

Figure 2: An isothermic checkerboard pattern on a discrete version of the Enepper surface.
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Weighted least-squares approximation in expected L2

norm

Matthieu Dolbeault
Sorbonne Université
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We investigate the problem of approximating a function u in L2 with a linear space of functions of dimension
n, using only evaluations of u at m chosen points, with m of the order of n. A first approach [2], based on
weighted least-squares at i.i.d random points, provides a near-best approximation of u, but requires m of
order n log(n). To reduce the sample size while preserving the quality of approximation, we need a result on
sums of rank-one matrices from [3], which answers to the Kadison-Singer conjecture. The results presented
here, expressed in expected L2 norm of the approximation error, can be found in [1] and will be compared to
alternative approaches [4, 5].

Joint work with: Albert Cohen.
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Multivariate Up-like Functions

Nira Dyn
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l
This talk presents the generation of multivariate C∞ functions with

coompact small supports by non-stationary subdivision schemes. Follow-
ing the construction of such a univariate function, called ”Up function”, by
a non-stationary scheme based on masks of stationary schemes generating
B-splines of growing degrees, we term the multivariate functions we generate
Up-like functions, and generate them by non-stationary schemes based on
masks of stationary schemes generating box-splines of growing supports .

To analyze the convergence and smoothness of these non-stationary
schemes, we develped new tools for analyizing convergence and smooth-
ness of certain classes of non-stationary schemes which are wider than the
class of schemes generating Up-like functions. These new tools are also pre-
sented in the talk, as well as a method for achieving small compact supports,
by which we obtain in the univariate case Up-like functions with supports
[0, 1 + ε], with ε arbitrarily small, in comparison to the support [0, 2] of the
Up function.

Joint work with: Maria Charina, Costanza Conti

niradyn@tauex.tau.ac.il
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C2 quartic splines on mixed macro-structures

Salah Eddargani
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The polynomial spline functions defined on triangulations are tools widely used in many different fields,
both theoretical and applied [1]. It is well known that Cr-regularity of a spline on a given triangulation is
obtained if all derivatives up to order 2r at the vertices of the triangles, in which case the degree must be
greater than or equal to 4r + 1 [2]. As in practice it is essential to use splines of the lowest degree for a given
class, different finite elements obtained by subdividing every triangle have been introduced and analysed in the
literature, among them the Clough-Tocher (3-CT), Powell-Sabin (6-PS) and Morgan-Scott (MS-) splits [3, 4, 5],
so that C2 smoothness results, for minimum degrees 6, 5 and 5, respectively. The construction of C2-continuous
quartic splines on a triangulation endowed with a mixed split consisting of macro-triangles with PS-6 or Modified
Morgan-Scott (MMS-10) refinements is addressed. Indeed, in [5, 6] it is proved that under a certain geometrical
conditions between macro-triangles and edge split points, the space of almost C2-continuous splines introduced
in [7] becomes a subspace of the space of C2-continuous functions. Joining the opposite vertices of every two
triangles sharing an edge gives, in general, a mixed-type triangulation in the above sense. This procedure may
result in a PS-6 refinement or an MS-split, from which an MMS-10 split is easily obtained.

For the mixed-type sub-triangulation, the construction of a basis of B-spline-like functions will be provided
to establish a suitable representation of the C2-continuous functions of the space.

Joint work with: Domingo Barrera Rosillo.
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In this talk will be presented recent results about the mathematical study of the algorithm proposed in [1]
where the authors proposed a variance reduction technique for the computation of parameter-dependent ex-
pectations using a reduced basis paradigm. We study the effect of Monte-Carlo sampling on the theoretical
properties of greedy algorithms which were established in the ideal case in [3]. In particular, using concentration
inequalities for the empirical measure in Wasserstein distance proved in [2], we provide sufficient conditions on
the number of samples used for the computation of empirical variances at each iteration of the greedy procedure
to guarantee that the resulting method algorithm is a weak greedy algorithm with high probability. These the-
oretical results are not fully practical and we therefore propose a heuristic procedure to choose the number of
Monte-Carlo samples at each iteration, inspired from this theoretical study, which provides satisfactory results
on several numerical test cases

Joint work with: Mohammed-Raed Blel, Tony Lelièvre.
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Adaptive stochastic Galerkin FEM (ASGFEM) with residual based a posteriori error estimation have shown
to exhibit optimal convergence in practice for some standard parametric PDEs. However, their implementation
is rather involved and requires significant effort when different problems should be tackled.

Motivated by recent results with empirical low-rank tensor regression in the framework of statistical learning,
we examine a non-intrusive reconstruction method that only uses samples of the solution and yields the Galerkin
projection with high probability. This can be seen as an easy to apply generalization of deterministic ASGFEM.
For the sum of error and estimator, the proposed adaptive algorithm can be shown to converge.

To realize the error estimator, a sufficiently accurate tensor representation of the coefficient is required,
which easily becomes challenging for instance when it is defined as an exponential function. We consider this
common case and recall that it corresponds to the solution of a differential equation. It hence can be computed
by means of a Petrov-Galerkin method for which error estimators are presented.

Joint work with: Nando Farchmin (PTB), Philipp Trunscke (Centrale Nantes).
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We investigate the maximum distance of a rank-two tensor to rank-one tensors. An equivalent problem is
given by the minimal ratio of spectral and Frobenius norm of a tensor. For matrices the distance of a rank k
matrix to a rank r matrices is determined by its singular values, but since there is a lack of a fitting analog of
the singular value decomposition for tensors, this question is more difficult in the regime of tensors. We extend
the results in [1] and show that the distance of a rank-two tensor A of order d to the set of rank-one tensors is
bounded by

min
rankB=1

∥A−B∥F <
√

1 −
(

1 − 1

d

)d−1

∥A∥F,

where ∥ · ∥F is the Frobenius norm. It is in particular remarkable that the constant in the right-hand side is

uniformly bounded by

√
1 −

(
1 − 1

d

)d−1
<
√

1 − 1
e and is again sharp for d → ∞. We therefore have a bound

for the distance of a rank-two tensor of any order to the set of rank-one tensors.

Joint work with: André Uschmajew.
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ETH Zurich

delbraechter@mins.ee.ethz.ch

Neural networks tend to be particularly successful in scenarios where the data points are high-dimensional.
The learned neural network then, by it’s nature, represents a function defined for any input in a high-dimensional
space. Thus it is natural to also think of the ground truth as a function on a high-dimensional domain when
considering it’s approximation by neural networks. However, looking at, e.g., image data we can be quite sure
that most potential inputs will never actually appear in any relevant task (e.g. in the case of images, only a
tiny subset of all possible configurations of pixel values will produce a humanly meaningful picture).
In particular one might argue that interesting ground truths need to be of significantly lower complexity, i.e.
intrinsic dimensionality, than the dimensionality of their input allows (even under other assumptions on their
simplicity as, e.g., some kind of smoothness). One could now be so bold to go further and conjecture that, in
fact, this combination of low intrinsic and high extrinsic dimensionality is a key prior which allows for successful
learning by neural networks.
I will present my considerations on a formal notion of intrinsic dimensionality, which is designed to be particularly
suitable for the study of approximation by neural networks, and moreover, has an empirical proxy which can
be efficiently computed for finite sets of data points.

Joint work with: Helmut Bölcskei, Pavol Harar
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In this talk, we’ll introduce graph wedgelets [1] as an adaptive tool for data compression on graphs. Graph
wedgelets approximate signals on graphs by piecewise constant functions on adaptively generated binary wedge
partitionings. In particular, they are discrete variants of continuous wedgelets and binary space partitionings
that are frequently used for the compression of 2D images. We prove that continuous results on best m-
term approximation with geometric wavelets can be transferred to the discrete graph setting and show that
the wedgelet representation of graph signals can be encoded and implemented in a simple way by a binary
tree structure. We will also illustrate how this graph-based method can be applied for the compression and
segmentation of images.
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Let (X, d, µ) be a metric measure space with µ being a probability measure. Furthermore, let (M, ϑ) be
another metric space with distance ϑ. This work focuses on the following generic optimization problem

φ∗ ∈ arg min
φ∈M

J(φ) =

∫

X

l(φ, x)dµ(x) + R(φ) (1)

where J : M → R is the objective function to be minimized, l : M× X → R is the integrand defining the
data-fidelity term and R : M→ R∪ {+∞} is an optional regularization promoting the a priori structure of the
solution.

In practice, the measure µ is rarely known but samples (xi)
n
i=1 drawn i.i.d. form it are usually accessible.

The empirical risk is therefore minimized in place of (1):

φ̂ ∈ arg min
φ∈M

Ĵ(φ) =
1

n

n∑

i=1

l(φ, xi) + R(φ). (2)

This abstract framework encompasses many estimation problems such as estimation of barycenters, penalized
barycenters in the Wasserstein space, eigenspaces of covariance matrices, penalized linear regression (LASSO)

and neural networks to name a few. Studying the generalization error J(φ̂) − inf J is an important question
started in the 70’s with [3] and pursued in many works [4, 6, 5]. This is still an active research field [1, 2].

Little is however known regarding the convergence of the minimizers in the sense ϑ(φ̂, arg minJ) and some
work recently addressed this question [7, 8]. Yet, they do not provide optimal results. In this work, I am
providing an alternative view point of this problem that allows to settle the assumptions from which optimal
convergence rates can be proven. Based on a fine characterization of the behavior of J around its minimizers,
those results leverage tools from geometry, optimization and probability theory.
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During this talk we will explain how to make use of the internal geometric structure of the spheres of odd
dimension to fairy distribute points in them.

Getting into the details: we will say that a set of points ωN = {x1, . . . , xN} ⊂ Sd is well distributed if its
associated discrete logarithmic or Riesz s-energy defined by

Elog(ωN ) = −
N∑

i=1

log ||xi − xj ||, Es(ωN ) =
N∑

i=1

1

||xi − xj ||s
(1)

is small. We will use well distributed points in S2 and PCd and the generalized Hopf fibration S1 ↪→ S2d+1 → PCd

to fairy distribute points in S2d+1. We use this technique with random point processes (determinantal point
processes), see [1], for odd dimensional spheres and with a deterministic family of points: the so called Diamond
ensemble, see [2].

Joint work with: Carlos Beltrán, Pablo Garćıa-Arce.
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A well-known feature of the Pythagorean-hodograph (PH) curves is the multiplicity of solutions arising from
their construction through the interpolation of Hermite data. In general, there are four distinct planar quintic
PH curves that match first-order Hermite data [1], and a two-parameter family of spatial quintic PH curves
compatible with such data [2]. Under certain special circumstances, however, the number of distinct solutions
is reduced [3]. Specifically, in the planar case it turns out that there may be only three (but not less) distinct
Hermite interpolants, of which one is a “double” solution (see Fig. 1). In the spatial case, a constant difference
between the two free parameters reduces the dimension of the solution set from two to one, resulting in a
family of quintic PH space curves of different shape but identical arc lengths. The values of the free parameters
that result in formal specialization of the (quaternion) spatial problem to the (complex) planar problem are
also identified, demonstrating that the planar PH quintics, including their degenerate cases, are subsumed as a
proper subset of the spatial PH quintics.

Figure 1: Examples of planar cases with only three distinct PH quintic Hermite interpolants. In each case, the
green curve corresponds to the “double” solution.

Joint work with: Rida Farouki, Federico Nudo
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We consider an elliptic partial differential equation with a random diffusion parameter discretized by a
stochastic collocation method in the parameter domain and a finite element method in the spatial domain.
We prove for the first time convergence of a stochastic collocation algorithm which adaptively enriches the
parameter space as well as refines the finite element meshes.

Joint work with: Andrea Scaglioni
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mature tools and open problems
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Optimal transport is a fundamental tool to deal with discrete and continuous distributions of points [1, 2].
We can understand it either as a generalization of sorting to spaces of dimension D > 1, or as a nearest
neighbor projection under a mass preservation constraint. Over the last decade, a sustained research effort
on numerical foundations has led to a ×1, 000 speed-up for most transport-related computations. This has
opened up a wide range of research directions in geometric data analysis, machine learning and computer
graphics.

This talk will discuss the consequences of these game-changing numerical advances from a user’s perspec-
tive. We will focus on:

1. Mature libraries and software tools that can be used as of 2022 [3, 4, 5, 6, 7, 8], with a clear picture of
the current state-of-the-art [9].

2. New ranges of applications in 3D shape analysis, with a focus on population analysis [10] and point
cloud registration [11].

3. Open problems that remain to be solved by experts in the field.

Joint work with: Minh-Hieu Do, Olga Mula-Hernandez, Marc Niethammer, Gabriel Peyré, Bernhard Schmitzer,
Thibault Séjourné, Zhengyang Shen, Anna Song, Alain Trouvé, François-Xavier Vialard.
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Generalized barycentric coordinates (GBCs) have several applications, including triangular mesh parameter-
ization, and morphing and image deformation, as well as to allow more flexibility in designing shape functions
for the finite element method. So it seems worthwile to derive some basis properties of GBCs. A property that
is shared by many well known kinds of GBCs on a convex polygon is a monotonicity property: the coordinate
function associated with each vertex is monotonically increasing in the direction towards the vertex. I will
discuss how to derive this property for various GBCs and also explore the question of whether some GBCs are
also convex in these same directions.
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This talk showcases that the sparsity of the LASSO minimizer is comparable to the sparsity of the original
vector being measured when the measurement matrix satisfies the restricted isometry property. This result
holds even in the noisy setting provided that the regularization parameter is not too small. Accompanying
two-sided bounds on the recovery error will also be given. The result will then be extended to variations of
the standard LASSO, including squared LASSO. We will highlight connections of the latter with nonnegative
least-squares and with orthogonal matching pursuit.
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The barycentric forms of polynomial and rational interpolation have recently gained popularity, because they
can be computed with simple, efficient, and numerically stable algorithms [1, 2, 3]. In this talk, we show more
generally that the evaluation of any function that can be expressed as r(x) =

∑n
i=0 ai(x)fi

/∑m
j=0 bj(x) in terms

of data values fi and some functions ai and bj for i = 0, . . . , n and j = 0, . . . ,m with a simple algorithm that first
sums up the terms in the numerator and the denominator, followed by a final division, is forward and backward
stable under certain assumptions. This result includes the two barycentric forms of rational interpolation as
special cases. Our analysis further reveals that the stability of the second barycentric form depends on the
Lebesgue constant associated with the interpolation nodes, which typically grows with n, whereas the stability
of the first barycentric form depends on a similar, but different quantity, that can be bounded in terms of the
mesh ratio, regardless of n. We support our theoretical results with numerical experiments, which indicate that
the first barycentric form is stable even in situations where the second barycentric form is completely unstable,
as shown in Figure 1.
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Figure 1: Multiple-precision implementation of a rational barycentric interpolant r(x) for x ∈ [0, 1] (red) and
numerical approximation r̂(x) in double precision for 10, 000 equidistant evaluation points in [103ε, 1 − 103ε],
where ε is the machine epsilon, using the standard implementations of the first (blue dots) and the second
(green dots) barycentric form.

Joint work with: Kai Hormann, Rosanna Campagna.
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We consider the problem of phase retrieval, recovering an n−dimensional real vector from the magnitude
of its m− linear measurements. This paper presents a new approach [1] allowing to lift the classical global
Lipschitz continuity requirement through the use of a non-euclidean Bregman divergence, to solve the nonconvex
formulation of the phase retrieval problem [2]. We show that when the measurements are sufficiently large,
with high probability we can recover the desired vector up to a global sign change. Our set-up uses careful
initialization via a spectral method and refines it using the mirror descent with a backtracking procedure to find
the optimal solution. We show local linear convergence with a rate and step-size independent of the dimension.
Our results are stated for two types of measurements: those drawn independently from the standard Gaussian,
and those obtained by Coded Diffraction Patterns (CDP) for Randomized Fourier Transform.

Problem Formulation: Our goal is to recover a vector x ∈ Rn from yr = |a∗rx|2, r ∈ {0, 1, ..,m}, where
ar ∈ Cn are the sensing vectors. We cast this as solving the following non-convex optimization problem:

min
x∈Rn

f(x) = 1
4m

∑m
r=1

(
yr − |a∗rx|2

)2
. Our recovery procedure starts at some vector x0 via a spectral method,

and then for k = 1, 2, . . ., implements the iteration

xk = (∇ψ)−1
(
∇ψ(xk−1)− γk∇f(xk−1)

)
(Mirror Descent)

where ψ(x) = 1
4 ‖x‖

4
+ 1

2 ‖x‖
2

is a kernel generating distance proposed in [3] and γk is the stepsize sequence
either fixed in ]0, 1/(3 + δ)], δ > 0, or adjusted via backtracking. ψ enjoys many desirable properties making
the (Mirror Descent) scheme very efficient. Our main result is the following.
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Figure 1: Example of relative error and
phase transition

Theorem 0.1 Let δ > 0 sufficiently small. Suppose that the num-
ber of measurements m is large enough i.e m ≥ C(δ)n log(n) in the
gaussian case (respectively m ≥ C(δ)n log(n)3 in the CDP case). If
(Mirror Descent) is initialized with a spectral method, then with proba-
bility at least 1 − 10e−cn − 8

n2 (c > 0 is a fixed numerical constant) for
the gaussian (respectively 1− 1

n3 for the CDP model) , we have

dist2(xk, x) = O
((

1− 1

3(3 + δ)

)k
)

(1)

where ∀z ∈ Rn, dist(z, x) = min {‖z − x‖ , ‖z + x‖}.

Joint work with: Jalal Fadili, Xavier Buet, Myriam Zerrad, Claude
Amra and Michel Lequime.
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Université Côte d’Azur, LJAD and INRIA Aromath, Nice, France.

andre.galligo@univ-cotedazur.fr

We compare model 1, developed by B. During et al. [1], aimed at studying fingerprint formation, and model
2 aimed at studying the dynamics of complex root sets of random polynomials under differentiation. [2]. The
illustrations below show at left the ridges of a “stabilised” fingerprint formation. At right, the “trajectories” of
the root set of a random polynomial Pn (represented by black solid boxes) and the root sets of several iterated
derivatives of Pn.

Both phenomena are produced by anisotropic non local interactions in a bounded domain in 2D.
In both cases,

� When the number n of particles tends to infinity the sets of particles are represented by density functions,
and asymptotic behaviors, are considered. They are created by balanced repulsion/attraction forces acting
on initial configurations.

� The velocity of a particle, hence the motion of the set, is estimated from a mean field approximation.

� The anisotropy is represented by a local property, expressed by either a 2-tensor T (xj) or by an infinitesimal
moving rectangle centered at xj , (which can also be represented by a 2-tensor) in order to capture the
stress created by the motion.

However,

� Model 1 was primarily designed for computing the stationary solutions of the PDE, whereas model 2
aims at understanding the begining of the motion, say for times t between 0 and 0.5, t is associated to
round(tn) derivations of Pn for n >> 1.

� The symbolic representations of the forces are different. Model 1 relies on explicit ensatz, which coefficients
are quadratic combinations of exponentials of the distance between two roots. Model 2 relies on an
electrostatic interpretation of the logarithmic derivative of Pn. The repulsion force is then computed by
an intricate geometric construction.

� In model 1, a parameter χ must be chosen in advance for the definition of the tensor. In model 2 the
variable c, which plays a similar role, is a function of the density, hence is time dependant.

And there are more differences ...
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Subdivision schemes are well-established tools for the construction of curves and surfaces. Given an initial
set of points attached to an initial grid, a subdivision scheme recursively refines the current grid and computes
new data to be attached to it, in order to obtain a smooth limit. This talk concerns dual subdivision schemes
working on one-dimensional grids and investigates their capability of generating limit curves that interpolate
the initial data. Recalling the results in [2], we first show that, differently from primal schemes, their dual
counterparts do not satisfy the step-wise interpolation property and are not defined via refinement rules that
at each stage of the iteration leave the previous set of points unchanged. Then, after reviewing the work
completed in [3], we prove that a whole family of dual interpolating schemes of arity larger than 2 can indeed
be constructed and, as recently discussed in [1], its construction can be conveniently reduced to the solution of
a certain Bézout-like polynomial equation. Moreover, under some suitable assumptions, it is also possible to
study a priori the existence of a dual interpolating scheme of a certain arity, that fulfills specific requests about
polynomial reproduction, support size and regularity.

Joint work with: Luca Gemignani (Università di Pisa), Alberto Viscardi (Università di Torino).

References
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Neural networks are used to approximate functions with success in many applications. In line with the
works [1, 2, 3], we are interested in understanding their approximation power in practice and in theory. Re-
garding practical applications, a key question is to be able to compare approximation properties of quantized
versus unquantized neural networks. Another important question is to better understand non-trivial situations
where neural networks can be expected (or not) to have better approximation properties than the best known
approximation methods, quantized or not.

We are concerned with quantitatively characterizing the optimal polynomial speed γ∗approx(C|Σ) at which
all functions of a set C, subset of a pseudo-metric space F , can be approximated by a sequence Σ = (ΣM )M∈N
of sets ΣM of ”simpler” functions, such as ones that can be represented by polynomials of degree M , or
ReLU neural networks with M non-zero parameters. We introduce a new property of the sequence Σ, called
∞-encodability, which forbids degenerate cases, where for example Σ1 = C is already so rich that it yields
unreasonable approximation rates. We show that:

(i) if Σ is ∞-encodable, then the Kolmogorov-Donoho complexity γ∗encod(C), which measures the best poly-
nomial asymptotic speed at which C can be encoded as binary sequences, and which is known for many
classical functions sets such as balls of Sobolev spaces, bounds from above γ∗approx(C|Σ);

(ii) many sequences Σ = (ΣM )M∈N are ∞-encodable: when ΣM contains M -terms linear combination of a
dictionary, with boundedness conditions on the coefficients, or when ΣM is Lipschitz-parameterized by
some bounded set in finite dimension, the latter includes the case of ReLU neural networks for which we
identify ”simple” sufficient conditions on the considered architectures for this to hold;

(iii) when ∞-encodability is inherited from Lipschitz-parameterization, a simple quantization scheme turns Σ
into a quantized sequence whose elements can be represented in a computer, attaining the same polynomial
approximation speed as Σ on every set C.

In light of point (ii), point (i) unifies and generalizes [2, Theorem VI.4][3, Theorem 5.24][4, Proposition 11].
Our framework applied to ReLU neural networks guarantees that uniformly quantized sparse ReLU networks

with standard growth assumption on sparsity, depth and weight magnitudes, approximate every set of functions
C with the same polynomial rate as their unquantized version. It also shows that approximation methods based
on an ∞-encodable sequence defined with ReLU neural networks share a common upper-bound on approximation
rates with other classical approximation methods also based on ∞-encodable sequences. As a consequence, given
C, if an ∞-encodable sequence is known such that γ∗approx(C|Σ) = γ∗encod(C), then no improved approximation
rate can be hoped for using ReLU networks.

Joint work with: Nicolas Brisebarre, Rémi Gribonval, Elisa Riccietti.
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[2] Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut Bölcskei. Deep neural network ap-
proximation theory. IEEE Trans. Inf. Theory, 67(5):2581–2623, 2021.

[3] Philipp Grohs. Optimally sparse data representations. In Harmonic and applied analysis, Appl. Numer.
Harmon. Anal., pages 199–248. Birkhäuser/Springer, Cham, 2015.
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A recent research trend is the optimization of Fourier sampling schemes for specific datasets of signals such
as the Fast-MRI database. Many works consider subset selection methods, which restrict the samples locations
on a grid, while a few recent papers begin exploring the optimization of off-the-grid sampling schemes using
continuous approaches with applications to Magnetic Resonance Imaging [6, 7]. Despite promising results in
terms of image reconstruction improvements, the optimization routines seem to suffer from a strong dependency
to the initialization.

In a recent work [4], we explain why choosing optimal non Cartesian Fourier sampling patterns is a difficult
nonconvex problem by bringing to light two optimization issues. The first one is the existence of a combinatorial
number of spurious minimizers for a generic class of signals. The spectral theory applied to Vandermonde
matrices [1, 3, 2, 5] allows to show that the cost function is highly oscillating. This results in a number of
minimizers larger than

(
M
K

)
· M !, where M is the number of measurements and K scales as the number of

maximizers of the Fourier transform modulus of the signal. The second issue is a vanishing gradient effect
for the high frequencies. In practice, this results in optimization routines being very slow, or trapped in local
minimizers: the final sampling schemes are close to the initialization.

We show how using large datasets can mitigate the first effect and we illustrate experimentally the benefits
of using stochastic gradient algorithms with a variable metric. We also suggest globalization approaches to
attack this challenging problem.

Joint work with: Frédéric de Gournay and Pierre Weiss.
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This paper introduces a new approximation method called Deep Multi Spline (DM-Spline) which is based on
a deep learning model and various types of spline functions (B-Spline, UAT-Spline, hyperbolic-Spline, ...). The
main idea is to combine different spline functions into a learning model that controls their contribution to the
accurate approximation of the function to be built. We introduce a new bridge between Deep Neural Networks
(DNNs) and spline approximation methods by developing a detailed theory in each layer and presenting some
results on this subject. To test the robustness of the proposed approach, a comparison to state-of-the-art is
achieved and shows the efficiency of our model. An application in the medical field is also provided.

Joint work with: Sbibih Driss, Jennane Rachid.
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We consider the registration of point clouds, that is, task of finding a transformation such that two point
clouds overlap. We assume that the target and source point clouds belong to the same algebraic variety (up to
a change in coordinates). Our method does not assume that a point correspondence is given.

Consider two algebraic varieties V1, V2 ⊂ Rn of the same degree d. We assume that there exists Q ∈ SO(n)
and a ∈ Rn which define a rigid transformation T : Rn → Rn such that the varieties V1 and V2 overlap, that is,
for all x1 ∈ V1, we have T (x1) := Qx1 + a ∈ V2. Let M1 ∈ Rn×s1 and M2 ∈ Rn×s2 be composed of respectively
s1 samples in V1 and s2 samples in V2. Given M1 and M2, our task is to estimate Q ∈ SO(n) and a ∈ Rn which
define the transformation T .

Our approach uses the monomial map, which is known to be rank deficient for matrices whose columns
belong to an algebraic variety [2]. We use a rank-minimization procedure inspired from [2] using the Grassmann
manifold. This allows us to write the registration as a smooth optimization problem defined on Riemannian
manifolds, which we solve using off-the-shelf algorithms from the Manopt toolbox [1].

We also propose a framework that is robust to noise in the initial data. That is, given two point clouds M̂1

and M̂2, which are noisy versions of M1 and M2 we aim to find a rigid transformation T such that T (M1) and
M2 overlap. To achieve this, we first attempt to recover M1 and M2 from M̂1 and M̂2, by solving a denoising
problem, which is also formulated as a smooth Riemannian optimization problem in the manner of [2]. For the
noisy and noiseless case, we show numerical results on synthetic examples which illustrate the efficiency and
accuracy of our approach, see Figure 1.
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Figure 1: Noisy rigid registration of quadratic curves for overlapping and partially overlapping data sets. Input
in the top image and output in the bottom image.

Joint work with: Coralia Cartis, Stéphane Chrétien.
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Locally refined B-splines, which were introduced by Dokken et al. [2], provide a generalization of tensor-
product B-splines to the case of locally refined meshes. While refinement strategies that ensure linear inde-
pendence have been studied recently [4, 3], the construction of LR B-splines may potentially generate basis
functions that possess the even stronger property of local linear independence (LLI). More precisely, LLI en-
sures that exactly (p + 1)d basis functions take non-zero values on any cell of the mesh and entails optimal
sparsity properties of the matrices that arise, e.g., in applications to numerical simulation. Motivated by the
notion of semi-regular tensor-product B-splines, which was introduced by Weller and Hagen [1], we investigate
related refinement strategies for locally linear independent LR B-splines in the bivariate case.

Joint work with: Bert Jüttler, Maodong Pan.
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[4] A. Bressan and B. Jüttler. A hierarchical construction of LR meshes in 2D. In: Computer Aided Geometric
Design 37, pages 9–24, 2015.

87



Deformable Voxel Grids
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We introduce Deformable Voxel Grids (DVGs), an adaptation of Active Volumes for semi-automatic shape
preprocessing. Intuitively, they deform the embedding space to a given shape in order to facilitate further shape
processing and analysis, by means of shape-DVG registration. A DVG is parameterized like a Topological Active
Volume [3], which is a volumetric extension of active contours [1, 2]. It is a lattice V on the unit cube, evolving
with an energy designed to smoothly embrace shape S: E(V ) = λeEelastic(V ) + λbEbending(V ) + λsES⊂V (V ).
The last term, ES⊂V , penalizing the non-inclusion of S in V , acts as a stopping barrier against the contraction
induced by Eelastic. To compute it, we approximate V with a dense ball covering, because each cell is hexahedral.

Once optimized, two things follow: (1) expressing S in coordinates (u, v, w) ∈ [0, 1]3 taken from the same
parameterization than V (u, v, w); (2) attributing scalar values to the cells of V , corresponding to the volume
occupancy of S within them. We call these operations registration and cubification. Indeed, (1) allows to
deform S by moving the control points of V , while (2) gives a “cubic” representation of the topology of S (see
accompanying image). DVGs provide a proxy for various applications, some of which are illustrated above:

Similarity search: Relying solely on V , which approximates the outer surface of S, gives a topological-
invariant shape descriptor which can be used to retrieve models similar to a given query model.

Semantical editing: Learning deformation modes of V (e.g. with a PCA) on a dataset, to induce a similar
deformation on DVG-registered shapes.

Topology transfer: Projecting a registered shape into the DVG of a different shape.

Basic correspondences: Cubified shapes tend to have similar parts in similar locations (color-coded above),
which suggests a potential for estimating shape correspondences, using a naive closest-point matching.

Morphing: For a pair of registered shapes, interpolating separately on the V lattice and the cubified shapes
(separating “form” and “content”). See above the three rows of interpolations (result in the center).

Progressive approximation with quadrilaterals: Surfaces given as triangle meshes can be approximated
by quadrilateral meshes, by voxelizing the cubified shapes and reprojecting to the DVG.
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Phase retrieval is a well known ill-posed inverse problem where one tries to recover images given only the
magnitude values of their Fourier transform as input. In recent years, new algorithms based on deep learning
have been proposed, providing breakthrough results that surpass the results of the classical methods. In this
work we provide a novel deep learning architecture PR-DAD (Phase Retrieval Using Deep Auto-Decoders),
whose components are carefully designed based on mathematical modeling of the phase retrieval problem. The
architecture provides experimental results that surpass all current results.

Joint work with: Shai Dekel, School of mathematical sciences, Tel-Aviv university
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In this talk, I will apply the tools developed in Lorenzi et al. 2014; Guigui et al. 2021 to the study of the motion
of the cardiac right ventricle under pressure or volume overload. The difficulty of this task lies in the interactions
between shape and deformation. The central idea of this work is to filter out these interactions using the parallel
transport of deformations to a reference shape, where deformations are considered in the Large Deformations
Diffeomorphic Metric Mapping (LDDMM) framework. It appears that parallel transport alone is not sufficient
to normalize deformations when large volume differences occur. We thus propose a normalization procedure
for the amplitude of the deformation, and compare it with volume-preserving metrics. After normalization, we
use a geodesic regression to represent the full cardiac contraction. The statistical analysis of the parameters of
the model reveal insights into the dynamics of each disease. The method is applied to 3D meshes of the right
ventricle extracted from echocardiographic sequences of 314 patients divided into three disease categories and
a control group (Moceri et al. 2018).

Joint work with: Xavier Pennec, Pamela Moceri, Nicolas Duchateau.
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Figure 1: Our framework to normalize cardiac deformations: we rely on registration to estimate deformations,
and parallel transport to normalize them.
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Patient-specific simulations are an important, growing tool for biomedical research. In order to customize
models for specific patients, anatomical structures are extracted from medical images, creating a geometric
model that serves as the computational domain for simulation of physics phenomena. A common application
is the numerical modelling of blood flow, tissue mechanics, or blood-tissue interaction in the cardiovascular
system. These models can then be used to assess patient-specific disease condition, risk of complications, and
test surgical interventions in silico.

Segmentation of medical image data for model geometry specification typically results in a discrete, flat-
faced, triangulated boundary representation (surface mesh) of the segmented structure [3]. This geometry
representation is suitable for low-order, classical finite element simulations of the physics. However, it has been
shown that isogeometric analysis (IGA)-based modelling of cardiovascular geometries yields more accurate,
robust, and efficient results in comparison to traditional low-order, FEM-based simulations [2]. Moreover, curved
surface representations of the model facilitate systematic manipulation and optimization of the geometry. For
example, the model can be unioned with a medical device, the geometry can be virtually altered to virtually plan
a surgery, and the high-order mesh nodes can be used as degrees of freedom to optimize artificial vasculature
design. Recently, higher medical image quality, streamlined image-to-model pipelines, and faster computational
algorithms have eased the difficulties associated with simulating cardiovascular phenomena on patient-specific
cardiovascular geometries [3]. However, these methods typically do not support high-order, curved surface
geometry specifications.

The SimVascular team has shown that curved, analysis-suitable geometries can be extracted from labelled,
low-order, patient-specific cardiovascular datasets [1]. In this presentation, I will discuss the state-of-the-field in
applications of IGA to the cardiovascular system, present preliminary work demonstrating the steps in an image-
to-analysis pipeline for IGA-based numerical simulations of cardiovascular dynamics on a open-source dataset
of labeled patient-specific models, and pose future directions and challenges associated with IGA simulation of
multiphysics problems associated with image-based cardiovascular fluid-structure interaction problems.

Joint work with: Alison L. Marsden, Hector Gomez, Craig J. Goergen.
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Department of Mathematics,

Karadeniz Technical University,
Trabzon,Turkey

ugurgozutok@ktu.edu.tr

We present an alternative method to existing algorithms [1, 2] for computing the projective equivalences
between two rational space curves. The method is inspired in [3], where torsion and curvature, two classical
and well-known differential invariants of space curves, are used to compute the similarities between two given
space rational curves. In our case, we produce two projective curvature-like invariants κ1 and κ2, that can be
used to characterize the existence of projective equivalences. In more detail, given two rational curves C1 and
C2 properly parametrized by p, q, we prove that C1, C2 are projectively equivalent if and only if

κ1(p) = κ1(q)(φ), κ2(p) = κ2(q)(φ),

where φ is a Möbius transformation. Then we can detect projective equivalence by checking whether or not
the gcd of the polynomials involved in the above equation has a Möbius-like factor. In the affirmative case φ
is obtained, and from here the projective equivalence itself can be easily computed. After finding the gcd, we
can also use polynomial system solving; but in that case the system is substantially smaller compared to other
approaches, which leads to better timings. The method has been implemented in Maple. A full description of
the algorithm and the ideas behind it can be found in [4].

Joint work with: Hüsnü Anıl Çoban, Yasemin Sağıroğlu
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[4] U. Gözütok, H.A. Coban¸ , Y. Sağıroğlu. A differential approach to detecting projective equivalences and
symmetries of rational 3D curves. arXiv:2110.05436v2.

92



Equivariant Subgraph Aggregation Networks

Haggai Maron
Nvidia Research

hmaron@nvidia.com

Figure 1: We present a provably expressive graph learning framework based on representing graphs as bags of
subgraphs and processing them with an equivariant architecture, composed of GNNs and set networks. Left
panel: A pair of graphs not distinguishable by the WL test. Right panel: The corresponding bags (multisets)
of all edge-deleted subgraphs, which can be distinguished by our framework.

Message-passing neural networks (MPNNs) are the leading architecture for deep learning on graph-structured
data, in large part due to their simplicity and scalability. Unfortunately, it was shown that these architectures
are limited in their expressive power [2].

This work proposes a novel framework called Equivariant Subgraph Aggregation Networks (ESAN) to address
this issue. Our main observation is that while two graphs may not be distinguishable by an MPNN, they often
contain distinguishable subgraphs. Thus, we propose to represent each graph as a bag (multiset) of subgraphs
derived by some predefined policy, and to process it using a suitable equivariant architecture. To deal with the
increased computational cost, we propose a subgraph sampling scheme, which can be viewed as a stochastic
version of our framework.

We develop novel variants of the 1-dimensional Weisfeiler-Leman (1-WL) [1] test for graph isomorphism, and
prove lower bounds on the expressiveness of ESAN in terms of these new WL variants. We further prove that
our approach increases the expressive power of both MPNNs and more expressive architectures. Moreover, we
provide theoretical results that describe how design choices such as the subgraph selection policy and equivariant
neural architecture affect our architecture’s expressive power.

A comprehensive set of experiments on real and synthetic datasets demonstrates that our framework improves
the expressive power and overall performance of popular GNN architectures.

Joint work with: Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen
Cai, Gopinath Balamurugan, Michael M. Bronstein.
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We analyze the deformation of three-dimensional shapes that are represented by surface meshes. To detect
underlying dynamics in the deformation behavior, we represent the data in a low-dimensional space using
non-linear dimensionality reduction methods.

The area of geometry processing offers different ways to obtain these low-dimensional representations. The
surface meshes can be projected onto Laplacian eigenvectors describing functions on the meshes. Autoen-
coders are a type of neural network for unsupervised representation learning that project the data to a learned
low-dimensional space. These networks have successfully been applied to surface meshes combining graph
convolutional filters and pooling operators, that reduce the mesh density.

The state-of-the-art methods generally depend on the adjacency matrix of the surface mesh. Therefore,
knowledge and patterns, which have been learned and detected on the training data, cannot be transferred to
surface data with a different mesh representation. In addition, note that a method that can handle meshes of

Figure 1: Analyze the deformation
pattern of an elephant, which has
not been presented to the network
during training.

different sizes and shapes has more training data available and can in par-
ticular be applied in scenarios where there are too few examples to train a
separate network.

Based on this observation, we developed a novel approach to handle
meshes of different shapes and sizes: Mesh Convolutional Autoencoder for
Semi-Regular Meshes of Different Sizes [2]. We calculate an alternative
discrete approximation of the surface data based on semi-regular meshes.
Semi-regular meshes have regular regional patches, which means that every
vertex inside the patch has exactly six neighbors. The local regularities in
the meshes allow us to reutilize learned convolutional filters and define a
pooling based on the local mesh regularity that is the same for all meshes
of this type. Since the convolutional neural networks learn local features,
we feed the regular regional patches, which all have the same meshing,
separately to the network. The global context is not lost but fed to the
network via padding. In this way, we use one network to analyze the
deformation of shapes that have different mesh representations.

We apply the same mesh autoencoder to diverse classes of datasets,
including moving humans and animals as well as deforming car compo-
nents. Our reconstruction error is more than 50% lower than the error
from state-of-the-art models [1, 3], which have to be trained for every mesh
separately. Additionally, we visualize the underlying dynamics of unseen
mesh sequences with an autoencoder trained on different classes of meshes
(see Figure 1).

Joint work with: Jochen Garcke.
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We present a novel statistical patch-based approach for image denoising [1]. The state-of-the-art unsu-
pervised methods that only use a single noisy image are two-step algorithms [2] [3]. Leveraging the Stein’s
unbiased risk estimate (SURE) [4] for the first step and the ”internal adaptation”, a concept borrowed from
deep learning theory [5], for the second one, we show that our NL-Ridge approach enables to reconcile several
previous patch-based methods for image denoising. In the second step, our closed-form aggregation weights are
computed through multivariate Ridge regressions. Experiments on artificially noisy images demonstrate that
NL-Ridge may outperform state-of-the-art unsupervised denoisers such as BM3D [2] and NL-Bayes [3], and
recent unsupervised deep learning methods such as Noise2Self [6], Self2Self [7], and Deep Image Prior [8] as well
as supervised techniques such as DnCNN [9], while being much more simple conceptually.

Noisy / 22.09 dB BM3D[2] / 31.72 dB Self2Self[7] / 31.62 dB DnCNN[9] / 31.06 dB NL-Ridge[1] / 32.06 dB

Figure 1: Denoising results (in PSNR) for Barbara corrupted with additive white Gaussian noise (σ = 20).
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Figure 1: Examples of the first 484 independent components estimated from the ImageNet dataset (1.2 · 106

examples and d = 150528) (left). In Lie-ADAM, we used a learning rate of 0.01 and a batch size of 484. The
model was trained with three runs through the dataset which took 3h on standard hardware with a single GPU.
A schematic overview of the algorithm is shown on the right.

We were interested in computing a mini-batch-capable end-to-end algorithm to identify statistically inde-
pendent components (ICA) [1] in large scale and high-dimensional datasets. Current algorithms typically rely
on pre-whitened data and do not integrate the two procedures of whitening and ICA estimation. Our online
approach estimates a whitening and a rotation matrix with stochastic gradient descent on centered or uncen-
tered data. We show that this can be done efficiently by combining Batch Karhunen-Löwe-Transformation [2]
with Lie group techniques [3]. By using b-sized mini-batches the space complexity of the entire pipeline for
d-dimensional inputs and k components is limited to O(d(k + b)). Our algorithm is recursion-free and can be
organized as feed-forward neural network which makes the use of GPU acceleration straight-forward. Because of
the very fast convergence of Batch KLT, the gradient descent in the Lie group of orthogonal matrices stabilizes
quickly. The optimization is further enhanced by integrating ADAM, an improved stochastic gradient descent
(SGD) technique from the field of deep learning. We test the scaling capabilities by computing the independent
components of the well-known ImageNet challenge (144 GB). Due to its robustness with respect to batch and
step size, our approach can be used as a drop-in replacement for standard ICA algorithms where memory is a
limiting factor.

Joint work with: Georg Umlauf, Matthias O. Franz
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Recognizing projective equivalence, i.e. detecting whether two objects are related by a projectivity, is
important in applied fields like Pattern Recognition and Computer Vision. For rational curves the problem is
well-understood, and efficient algorithms for detecting projective equivalence are available [3]. However, for other
curves the problem is still open. Here we will consider curves birationally equivalent to elliptic and hyperelliptic
planar curves, which are not rational, although they can be parametrized by rational functions and square-roots
of rational functions. These curves are well-known in Mathematics, both for their rich mathematical properties
and for their applications in Cryptography, and appear naturally in several constructions in Computer Aided
Geometric Design [2], like offsets of rational curves, bisectors of certain curves or contour curves of rational
canal surfaces. Four our purposes, the most useful property of these curves is that elliptic and hyperelliptic
curves have a birational model in the plane defined by Weierstrass equations (Weierstrass normal forms), so
that plane curves birationally equivalent to elliptic and hyperelliptic curves also inherit a Weierstrass model
by composition of the birational mappings. Thus, from an algorithmic point of view, the key idea is to find a
corresponding transformation between the Weierstrass forms of the curves, which in the case of elliptic curves
can be completely characterized. The results presented in this talk can be found in [1].

Joint work with: Juan Gerardo Alcázar.
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We present some results concerning Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm
(WCGA), which is a generalization to Banach spaces of the Orthogonal Matching Pursue (OMP) algorithm for
Hilbert spaces. The results are proved in the context of uniformly smooth Banach spaces.

We shall present a result that improves earlier bounds in V.N. Temlyakov (Sparse approximation and recovery
for greedy algorithms in Banach spaces, Forum Math. Sigma 2 (12) (2014)). We apply this result to derive
optimal bounds for the Multivariate Haar system in Lp with 1 < p ≤ 2, under the Littlewood-Paley norm,
and also for the canonical basis in the mixed norm sequence spaces `p(`q) (for all 1 < p, q <∞). Several open
questions will also be stated.

This is joint work with S. Dilworth, G. Garrigós, D. Kutzarova, and V.N. Temlyakov that was started during
the program Approximation, Sampling and Compression in Data Science held at the Isaac Newton Institute
for Mathematical Sciences, Cambridge (UK), during the first semester of 2019.
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This talk is devoted to unrefinement of representations of computational domains (parameterizations) in
isogeometric analysis [1]. Unrefinement allows to perform faster simulations while maintaining a reasonable
level of the precision in the specified area. We present an algorithm that creates a coarser parameterization
p̃(u, v) (i.e. with the less degrees of freedom) from a given parameterization p(u, v). Both parameterizations are
assumed to be represented via THB-splines [2]. Moreover, the coarser parameterization possesses the following
properties:

• The dimension of the space spanned by the THB-splines basis functions, which are used to represent a
p̃(u, v), is lower.

• The coarser parameterization p̃(u, v) is regular. In particular, no self-intersections are allowed to be
present.

• The created parameterization p̃(u, v) approximates the initial parameterization p(u, v) globally with a
given precision.

• On a part of a domain boundary (“feature”) the coarser parameterization p̃(u, v) approximates p(u, v)
globally with a given lower precision.

The algorithm uses local projectors [3] and different local optimization techniques [4] to ensure the approximation
and regularity properties.

Joint work with: Annalisa Buffa, Bert Jüttler.
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Many applications in the natural and applied sciences involve the solution of partial differential equations
(PDEs) on surfaces. Application areas for PDEs on static surfaces include image processing, biology, and com-
puter graphics. Applications for PDEs on moving surfaces also occur frequently. Notable examples arise in
biology, material science, fluid dynamics, and computer graphics.

Radial Basis Function-generated Finite Difference (RBF-FD) methods have the properties of being meshfree
(giving it flexibility to represent complex geometries in any spatial dimension), of providing a high order of
accuracy, as well as having a low computational complexity. Although RBFs have been used for solving PDEs
on static manifolds for a few years (e.g. [1, 2]), its application to solving PDEs on moving curves and surfaces is
in its infancy. In this presentation, we introduce a procedure to solve PDEs on evolving surfaces. Our method
is based on the RBF-FD method to discretize curve (or surface)-constrained differential operators, to accurately
and efficiently evolve solutions, manifolds, and the computational grid. We will show that the proposed method
is stable, has a high order of accuracy, and is computationally cheap compared to its various counterparts (e.g.
[3]). We will present a number of examples to illustrate the numerical convergence properties of our proposed
method.

Joint work with: C. Piret, J. Blazejewski.
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The ℓ1-norm of a monotonically decreasing sequence of nonnegative numbers can be sandwiched by a sum
involving the best n-term approximation errors measured in the ℓq-norm, suitably scaled by positive constants.
But what are the optimal constants? In this talk, you will get in touch with the contributions of Copson,
Stechkin, Pietsch, Temlyakov, and Bennett, the geometry behind the problem, and variants of the inequality,
where the ℓ1-norm is replaced by its weak counterpart or where sums are replaced by integrals.

Joint work with: Tino Ullrich.
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The phase retrieval in diffraction theory mainly consists in recovering a signal f ∈ L2(Rd) from the modulus

of its Fourier transform |f̂ |. It is well known that this problem is severelly ill posed. One of the reasons for this

is that the solution set {g ∈ L2(Rd) : |ĝ| = |f̂ |} may be very large.
One may thus try to reduce the solution set by adding more measurements. For instance, one may add

a mask which amounts to replacing the measurement |f̂ | by |m̂f | where m is a masking function. A good

description of this idea and actual experiments which are done this way can be found in [1] where the data |m̂f |
has been called a coded diffraction patern. The experiments may be summarized in the following picture taken
from [1].

So far this problem has mainly been studied in the discrete setting, that is, with L2(Rd) replaced by
L2
(
(Z/NZ)d), the Fourier transform being then the discrete Fourier transform. It is then known that 3 well

chosen masks can determine almost all signals (but not all) while a small number of randomly chosen masks
allow to determine all signals.

The aim of this talk is to show that the situation is better in the continuous setting:

Main result. Let γ1(t) = e−πt
2

, γ2(t) = te−t
2/2 γ2(t) := 2πtγ(t), γ3(t) := (1 − 2πt)γ(t). Let f, g ∈ L2(R) be

such that |f̂γj | = |ĝγj | then there exists c ∈ C with |c| = 1 such that f = cg.

The proof uses complex analysis and the original idea comes from a paper by McDonald [2]. A stronger
argument allows to construct more families of masks that lead to the same result. We will also explain that
the direct analogues of these masks in the discrete setting don’t work and that this is mainly an issue about
under-sampling.

Joint work with: Martin Rathmair (Bordeaux)
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In the field of delineation of 2D or 3D regions of interest (ROI) in medical imaging, and especially due to the
development of multimodal and multiparametric image acquisition devices, the combination of segmentations of
anatomical structures from different sources is of interest. It is also essential to accurately evaluate the variability
between experts delineation or algorithms with different parameters. In this work, we propose to estimate a
mutual shape defined as the optimum of a statistical criterion based on information theory. Compared to our
previous works [2, 3], we propose to interpret the mutual shape as a sum of distances of the Fréchet family and
we extend our approach to 3D shapes fusion.

Let us consider {Ω1, ...,Ωn}, a set of n shapes corresponding to different segmentations of the same object.
Shapes may include partial information or erroneous parts. Our goal is to compute a reference shape Ωref to
estimate the considered object by combining the information given by all the regions Ωi. In the literature, mean
shapes are usually defined by minimizing the following functional: J1(µ) =

∑n
i=1 d1(Ωi,Ωref ). The choice of the

distance d is crucial and can lead to different results. For example, mean shapes can be computed by minimizing
the sum of symmetric differences using d1(Ωi,Ωref ) = |Ωi4Ωref | where Ωi4Ωref = (Ωi ∪ Ωref ) \ (Ωi ∩ Ωref ).

Given a measure space (X,A,mes), a mutual shape can be defined more generally by minimizing the
following functional: J2(µ) =

∑n
i=1 d2(Ωi,Ωref ) where d2(Ωi,Ωref ) = mes(Ωi4Ωref ) is a finite signed measure

of the symmetric difference not necessarily defined by the cardinality measure as in d1. Under certain properties,
such a distance is a shape metric known as the Fréchet-Nikodym distance [1]. This seems of interest because of
the relevance of Fréchet distances in medical image analysis [4]. Such a distance can be considered under the
umbrella of information theory. Indeed information theory quantities can be considered in terms of measure
over sets. The joint entropy can be expressed using H(Di, T ) = mes(D̃i ∪ T̃ ) and the mutual information using
I(Di, T ) = mes(D̃i ∩ T̃ ) where D̃i and T̃ are the abstract sets associated to Ωi and Ωref (Di and T define
the random variables associated to the each characteristic functions). The mutual shape T is then defined
by minimizing E2(T ) =

∑n
i=1 (H(Di, T )− I(Di, T )) expressed in a continuous framework and computed using

shape optimization tools [2].
An example showing the interest of the combination of segmentation methods computed separately on four

MRI modalities is given in [3]. In this current work, we extend our framework to 3D shapes fusion and we
provide below a synthetic example to demonstrate the difference between the mutual shape (criterion J2), the
mean shape (criterion J1) and the union of shapes. The algorithm is robust to the outlier Ω6.

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 (a) Union (b) Mutual shape (c) Mean shape

Figure 1: (Ω1 to Ω6) : 2D Front views of 3D entries, (a) : Union of Ωi (3D), (b) : Mutual Shape (3D), (c) : Mean shape (3D).
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Figure 1: Virtual assembly of complex geometry: insertion of a car starter motor into the engine.

Six-DoF haptic rendering is useful for interactive applications in virtual assembly and maintenance of com-
plex machinery, such as, for example, car engines and landing gears. Because mechanical components are often
geometrically complex, such applications require efficient interactive simulation, involving collision detection
and rigid and deformable object simulation. In simulations involving complex distributed contact, there are
typically many simultaneous individual contacts, posing stability issues due to accumulated stiffness. In order
for simulations to be useful, they must eliminate (or at least minimize) false-positives, i.e., paths that violate
contact due to errors in the contact resolution algorithm. Friction is non-trivial, due to the large number of
contacts and stringent time requirements. Similarly, preparing the signed distance fields and point clouds can
take an unreasonably amount of time with models of realistic complexity. Even if the haptic rendering problem
were to be completely solved, this alone is not sufficient for efficient training of virtual assembly, because users
still need to be trained how to perform complex assembly paths.

In my talk, I will give recent advances on these problems in my group at the University of Southern California.
I will discuss signed distance field generation, continuous collision detection, adaptive stiffness and friction. I
will also discuss how to augment 6-DoF haptic rendering of contact to maximize virtual assembly training
efficiency, by employing carefully selected visual and haptic guidance strategies.

Joint work with: Hongyi Xu, Danyong Zhao, Yijing Li, Mianlun Zheng.
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The q-Bernstein, 0 < q ≤ 1, basis of univariate polynomials has played an important role in several fields,
such as Computer Aided Geometric Design (CAGD), Approximation Theory or Quantum Calculus. They have
received much attention in recent research (cf. [3, 4, 5, 1, 2] and references in there). For the particular case
q = 1, it coincides with the basis of Bernstein polynomials.

In this talk, q-Bernstein basis functions over a triangular domain will be presented and analyzed. Recurrence
relations and properties such us partition of unity and degree elevation will be shown for them. Evaluation
algorithms will be presented.

Joint work with: Héctor Orera, Juan Manuel Peña.
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We describe a construction of locally supported spline projectors for truncated hierarchical (TH) B-splines.
These operators, which are based on restricted hierarchical spline fitting, can be used to generate approximations
of functions in adaptively refined spline spaces [1]. We discuss the computational efficiency of the resulting
algorithms. In addition, we show that these projectors can be employed successfully for the discretization
of partial differential equations via isogeometric collocation. More precisely, we combine the framework of
weighted isogeometric collocation [2] with the THB-spline projectors and discuss the computational efficiency
of the algorithms and the convergence properties of the resulting discretization scheme [3].

Joint work with: Alessandro Giust
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Shape registration is a central problem in computational anatomy. The well-studied case where shapes
are homologous is yet not always adapted. The reason can be the inter-individual variability, the study of
pathological anomalies or some acquisition methods that provide cropped data.

In this talk, I will present an asymmetric data attachment term characterizing the inclusion of one shape in
another. This term is based on the metrics of varifold spaces. Varifolds are representations of geometric objects,
including curves and surfaces. Their specificity is to take into account the tangent spaces of these objects and
to be robust to the choice of parametrization.

This new data attachment term widens the field of application of the pre-existing methods of matching
by large diffeomorphic deformations (LDDMM). The partial registration is indeed induced by a diffeomorphic
deformation of the source shape. The anatomical (topological) characteristics of this shape are thus preserved.

Joint work with: Pierre-Louis Antonsanti and Joan Glaunès.
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Abstract

A new method for 5-axis flank milling of free-form surfaces is proposed. Existing flank milling path-
planning methods typically use on-market milling tools whose shape is cylindrical or conical, and is therefore
not well-suited for meeting fine tolerances for manufacturing of benchmark free-form surfaces like turbine
blades, gears, or blisks. In contrast, our optimization-based framework incorporates the shape of the tool
into the optimization cycle and looks not only for the milling paths, but also for the shape of the tool itself.
Given a free-form reference surface and a guiding path that roughly indicates the motion of the milling tool,
tangential movability of quadruplets of spheres centered along a straight line is analyzed to indicate possible
shapes and their motions. This results in G1 Hermite data in the space of rigid body motions that are
interpolated and further optimized, both in terms of the motion and the shape of the milling tool itself. We
demonstrate our algorithm on synthetic free-form surfaces and industrial benchmark datasets, showing that
the use of custom-shaped tools is capable of meeting fine industrial tolerances and outperforms the use of
classical, on-market tools.

Joint work with: Oleksii Sliusarenko, Michal Bizzarri, and Michael Bartoň.
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linearized optimal transport

Varun Khurana
University of California, San Diego

vkhurana@ucsd.edu

Detecting differences and building classifiers between distributions, given only finite samples, are important
tasks in a number of scientific fields. Optimal transport (OT) has evolved as the most natural concept to
measure the distance between distributions and has gained significant importance in machine learning in recent
years. However, OT often fails to exploit reduced complexity in case the family of distributions is generated by
simple group actions. In this talk, we discuss how optimal transport embeddings can be used to deal with this
issue, both on a theoretical and a computational level. In particular, we embed the space of distributions into
an L2-space by mapping a distribution to its OT map with respect to a fixed reference distribution. We further
give an exact characterization of distributions for which this embedding is an isometry. In the embedding space,
we use regular machine learning techniques to achieve linear separability when the classes of distributions are
generated by a family of shearings (which directly extends the work of [2]), describing conditions under which
two classes of sheared distributions can be linearly separated. We also give necessary bounds on these shearing
transformations to achieve a pre-specified separation level. Furthermore, embedding into multiple L2 spaces
allows for not only larger families of transformations but also a greater level of linear separation. Finally, our
theoretical results are verified empirically on image classification tasks.

Joint work with: Harish Kannan, Alex Cloninger, Caroline Moosmüller.
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We present a shape-preserving subdivision scheme with a tension parameter that generalizes the four-point
Deslauriers-Dubuc scheme and the cubic B-spline. Whereas many shape-preserving schemes are non-linear and
non-uniform, the proposed scheme is linear and stationary. The refinement rule has the same support length
as the four-point scheme and provides fourth-order accuracy. The scheme is nearly interpolant such that by
sacrificing the interpolating property, it attains an improved smoothness, that is C2, while the interpolatory
four-point scheme is C1. In addition, we show that the proposed scheme preserves monotonicity and convexity
under some mild conditions. Some numerical examples are presented to illustrate the performance of the
proposed scheme.

Joint work with: Hyoseon Yang and Jungho Yoon
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The well-known discrete Fourier transform (DFT) can easily be generalized to arbitrary nodes in the spatial
domain. For M ∈ 2N we define the multi-index set

IM := Zd ∩
[
−M

2 ,
M
2

)d
=
{
k := (kt)

d
t=1 ∈ Zd : − M

2 ≤ kt <
M
2 , t = 1, . . . , d

}

with cardinality |IM | = Md. For given coefficients f̂k ∈ C, k ∈ IM , as well as arbitrary nodes xj ∈
[
− 1

2 ,
1
2

)d
,

j = 1, . . . , N , in the space domain, we are interested in the fast evaluation of the N values

f(xj) =
∑

k∈IM

f̂k e−2πikxj , j = 1, . . . , N .

The fast procedure for this generalization is referred to as nonequispaced fast Fourier transform (NFFT) and
has complexity O(|IM | log(|IM |) +N).

Various applications such as MRI, solution of PDEs, etc. are interested in the inverse problem, i. e., com-
puting Fourier coefficients f̂k ∈ C, k ∈ IM , from given nonequispaced data fj = f(xj) ∈ C, j = 1, . . . , N .
In contrast to iterative solvers we study direct methods for this inversion, when we are in the overdetermined
setting. For this purpose, we use the matrix representation of the NFFT. Besides the study of the approach of
so-called density compensation factors, we introduce a new method using optimization. Modifying one of the
matrix factors of the NFFT leads to an optimization problem, which can simply be solved in a precomputational
step using normal equations. Thereby, we are able to compute an inverse NFFT up to a certain accuracy by
means of a modified adjoint NFFT, which preserves the arithmetic complexity of O(|IM | log(|IM |) +N).

Joint work with: Daniel Potts.
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Virtual characters are ubiquitous in a wide range of graphics applications from real-time computer games to
(offline) special effects in movies. Enabled by recent advances in 3D-scanning and character generation, realistic
virtual avatars are also increasingly used in virtual reality applications, where they allow the user to act in
and interact with the virtual environment. In particular in this rapidly growing field of research, the steadily
improving fidelity of character appearance increases the demand for more realistic character animation - while
retaining interactive frame rates. Existing approaches either suffer from artifacts, have high computational costs
or require a lot of input data like multiple surface scans of the character in different poses or manually defined
per-vertex skinning weights.

Our Fast Projective Skinning approach (FPS) [1, 2] introduces a two-layered model consisting of rigid bones
and an elastic soft tissue layer that is efficiently constructed from a surface mesh of the character and its
underlying skeleton. While maintaining real-time performance our method overcomes the well-known artifacts
of commonly used geometric skinning approaches. It further enables dynamic effects and resolves local and
global self-collisions. In particular, our method neither requires skinning weights, which are often expensive to
compute or tedious to hand-tune, nor a complex volumetric tessellation, which fails for many real-world input
meshes due to self-intersections. By developing a custom-tailored GPU implementation and a high-quality
upsampling method, our approach is the first skinning method capable of detecting and handling arbitrary
global collisions in real-time.

In the second part of our talk, we would like to briefly introduce our second model, which focuses on human
virtual characters [3]. This restriction to human characters allows us to build an anatomically plausible three-
layered representation of a person from a single surface scan. It is composed of three surfaces for bones, muscles
and skin enclosing the volumetric skeleton, muscles and fat tissues. Our approach is able to compute this model
for a specific person in just a few seconds. It includes a data-driven method for estimating the amount of muscle
mass and fat mass from a surface scan, which provides more accurate fits to the variety of human body shapes
compared to previous approaches. Our second model provides more realistic character animation than the
former two-layered model and can further be used for physical simulation, statistical analysis and anatomical
visualization in computer animation or in medical applications, which we demonstrate on several examples.
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We investigate quadrature rules for quadrilateral Gregory patches [1], in short Gregory quads. We provide
numerical and where possible symbolic quadrature rules for the space of twenty polynomial/rational functions
associated with Gregory quads, as well as their derivatives, products, and products of derivatives, i.e., the derived
(isogeometric) spaces. This opens up the possibility of incorporating Gregory quads in numerical simulations [2]
without having to resort to imprecise quadratures.

Joint work with: Jun Zhou, Pieter Barendrecht, Michael Bartoň
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The main result in this paper is an error estimate for interpolation biharmonic polysplines defined in an
annulus A (r1, rN ), with respect to a partition by concentric annular domains A (r1, r2) , ...., A (rN−1, rN ) , for
radii 0 < r1 < .... < rN . By definition these are C2 functions which are piecewise biharmonic, and interpolating
a sufficiently smooth data function on the spheres |x| = rj for j = 1, ..., N, see [1]. We consider polysplines
which satisfy so-called natural boundary conditions on the external boundaries, i.e. for |x| = r1 and |x| = rN .
By analogy with a technique in one-dimensional spline theory established by C. de Boor, we base our proofs
on error estimates for harmonic interpolation splines with respect to the partition by the annuli A (rj−1, rj).
Details are available in [2].

Joint work with: Hermann Rener, Tsvetomir Tsachev.
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In this talk we consider the evaluation of blending type splines on a polygon grid. One promising application
of the blending spline surfaces is for isogeometric analysis. Polygon grids provide great flexibility for constructing
a wide range of computational domain geometries. The blending spline basis functions possess the following
properties: strict locality, Cd-smoothness over the polygon grid, and linear independence. The combined expo-
rational functions that form the basis for blending splines are evaluated as a combination of the underlying
basis functions defined on each polygonal element and multivariate Bernstein polynomials.

We present the main steps of the isogeometric analysis approach in terms of polygonal blending splines: poly-
gon mesh generation, evaluation of the combined expo-rational basis on the parametric domain, approximation
of the curvilinear computational domain, constructing and solving the linear matrix equation that represents a
model problem. The talk mainly focuses on the isogeometric concept of the proposed method, i.e. the use of
the special type of basis functions both in the domain construction and in the analysis. In addition, we discuss
the properties of the combined expo-rational basis functions over the polygon grid and provide a numerical
comparison of several refinement schemes.
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Suppose a function is sampled at a point set in order to reconstruct from the function values an approximant
to the original function with the error being measured in an Lq-norm. For this task, point sets with good covering
properties are often used. We show that on a compact Riemannian manifold one may as well use uniform random
points, provided that suitable conditions on the Sobolev space containing the function hold. For this purpose
we present a criterion of (asymptotic) optimality of point sets for this problem. We also discuss the related
approximation of the integral using uniform random points.

Joint work with: David Krieg
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Sampling recovery in L2
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We consider the problem of recovering a function f : Ω → C belonging to some class F based on a finite
number of samples. The class F reflects our a priori knowledge about the function. Here, Ω is any compact
domain or manifold and F is any compact subset of C(Ω). The error is measured in a worst case scenario (over
the function class) and with respect to the L2-distance. The following general result was recently obtained by
the authors:

If the Kolmogorov widths of F show a polynomial decay of order s > 1/2,
then there is a weighted least squares estimator that achieves the same rate of convergence.

We discuss this result and address the following questions: What does the algorithm look like? What can
be said in the case s ≤ 1/2 ? What results do we obtain for the tractability of the problem in high dimensional
settings? We also relate to recent results of Nagel/Schäfer/Ullrich, Temlyakov and Cohen/Dolbeault.

Joint work with: Aicke Hinrichs, Erich Novak, Mario Ullrich, Jan Vyb́ıral, Henryk Woźniakowski.
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We study Monte Carlo methods for integrating smooth functions based on n function evaluations.
The classical way of assessing the precision ε of a randomized integration method is based on the root mean

squared error (RMSE) or the mean error. Optimal Monte Carlo error rates in terms of the mean error are
well known for classical Sobolev spaces W r

p

(
[0, 1]d

)
and can be achieved with methods like control variates, in

some cases also via stratified sampling. For spaces Wr,mix
p

(
[0, 1]d

)
of dominating mixed smoothness, optimal

integration methods based on a randomly shifted and dilated Frolov rule have been found in [1, 2]. If, however,
the error is measured in terms of small error ε with high probability 1 − δ, the so-called probabilistic error
criterion, see [3], some of the aforementioned methods turn out to be suboptimal with the error ε = e(n, δ)
depending polynomially on δ−1 instead of the polynomial dependence on log δ−1 we hope for. Optimality
in classical Sobolev spaces can be restored for control variates employing the median-of-means, for stratified
sampling concentration phenomena (Hoeffding’s inequality) can lead to optimality; in any event, the amount of
random numbers in such optimal methods is proportional to n. The randomized Frolov rule which uses only 2d
random parameters independently of n, however, turns out to be suboptimal with respect to the probabilistic
error criterion.

This raises the question: How small can the probabilistic error be if we limit the amount of randomness?
Restricted Monte Carlo methods that only use a small amount of random bits have been studied in [4] for the
RMSE criterion. A similar study for the probabilistic error criterion of restricted Monte Carlo methods will be
presented.

Joint work with: Daniel Rudolf.

References

[1] D. Krieg, E. Novak. A universal algorithm for univariate integration. Found. Comput. Math., 17:895916,
2017.

[2] M. Ullrich. A Monte Carlo method for integration of multivariate smooth functions. SIAM J. Numer. Anal.,
55(3):1188–1200, 2017.

[3] R.J. Kunsch, D. Rudolf. Optimal confidence for Monte Carlo integration of smooth functions. Adv. Comput.
Math., 45:3095–3122, 2019.

[4] S. Heinrich, E. Novak, and H. Pfeiffer. How many random bits do we need for Monte Carlo integration? In:
Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.), pages 27–49, 2004.

118



Infinite-dimensional STFT phase retrieval from lattice
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The STFT phase retrieval problem arises as the result of trying to invert the mapping that sends a square-
integrable function f ∈ L2(R) to spectrogram samples of the form

|Vgf(L)| := {|Vgf(ℓ)| : ℓ ∈ L},

where Vgf(x, ω) =
∫
R f(t)g(t− x)e−2πiωt dt denotes the short-time Fourier transform of f with respect to a

window function g ∈ L2(R) and L ⊆ R2 is a sampling set in the time-frequency plane. An inversion of f from
|Vgf(L)| is only possible up to the ambiguity of a global phase factor. We say that f and h agree up to a global
phase if there exists a constant c ∈ C, |c| = 1, such that f = ch.

Regarded as a non-linear inverse problem, the investigation of uniqueness and stability of the STFT phase
retrieval problem is of major importance. It is folklore in the phase retrieval community that under suitable
assumptions on the window function g, every f ∈ L2(R) is determined up to a global phase from |Vgf(L)|
provided that L is a continuous domain such as an open set or the entire time-frequency plane. We are
interested in the case where L is a separated set, most notably a lattice, i.e. L = LZ2 for some L ∈ GL2(R).
First, we present a result which reveals a fundamental difference between the continuous and discrete case: there
exists no window function g ∈ L2(R) and no lattice L ⊂ R2 such that every f ∈ L2(R) is determined up to a
global phase by |Vgf(L)| [2, Theorem 1.2]. If the window function g is a Gaussian then the STFT phase retrieval
problem is known as the Gabor phase retrieval problem. In this setting, uniqueness from lattice samples can be
achieved by imposing a support condition: every f ∈ L4[− c

2 ,
c
2 ] is determined up to a global phase by |Vgf(L)|

if g is a Gaussian and L is a rectangular lattice of the form L = Z× 1
2cZ [1, Theorem 3.1]. Finally, we consider

shift-invariant spaces Vp
β(h) = {∑k∈Z ckh(· − βk) : {ck} ∈ ℓp(Z)} where h ∈ Lp(R) is a generating function and

β > 0 is a step-size. We will demonstrate that Gabor phase retrieval in Gaussian shift-invariant spaces from
lattice samples is possible under a suitable assumption on the step-size β which allows the application of the
ergodic theorem [1, Theorem 3.6]. In addition, we highlight that the shift-invariant setting allows the design of
a reconstruction algorithm which recovers functions in a provably and stably manner [3].

Joint work with: Philipp Grohs.
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Any parametric curve or surface where the formula is based on polynomials, rational functions, trigonometric
functions, exponential functions, logarithmic functions, etc. can be made editable by adding some simple
structures. That is, we can easily change the shape of any curve or surface by adding a set of interpolation
“points” with associated structures, which can then be moved, rotated and scaled.

The method is a special case of blending splines, [1, 2], where we add knot vectors that generate 1st-degree
B-splines, but where the B-spline basic functions are smoothed with blending functions, [1, 3]. We then add
some special coefficients, each of which is connected to knot values. These coefficients are homogeneous matrices.
Each of these represents a point, i.e. a position, and a set of associated local coordinate axes that form a local
coordinate system.

The construction and implementation will be explained in more detail and many examples will be given.
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Bernstein polynomials and Bézier curves play an important role in Computer Aided Geometric Design. Sev-
eral generalizations of Bézier curves have been introduced in recent years. Aside from the natural generalizations
represented by rational Bézier and B-spline curves, further generalizations have been investigated: among these,
Polya polynomials [1, 2], q-Bézier curves [4], Bézier curves based on umbral calculus [5].

In this work we propose further results about generalized Bernstein operator which guarantees the second-
order approximation property [3]. Specifically, a wider class of second-order operators is introduced, depending
on a real parameter h.

Moreover we define and study a novel generalization of Bézier curves, based on such a new approach, showing
numerical and graphical results.

Joint work with: Beatrice Azzarone, Department of Mathematics, University of Torino.
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In this talk we consider supervised binary image classification. We introduce a (idealized) statistical model
based on grayscale images where each image is subject to some random scaling and random dilation. We discuss
different approaches to solve our classification problem. Interestingly, all classifiers improve with increasing
dimension d and are able to perfectly separate classes. Our new perspective on an image classification problem
helps us not to be affected by the curse of dimensionality.

Joint work with: Johannes Schmidt-Hieber
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Isogeometric splines on multipatch domains (cf. [1]) are needed for the discretization of partial differential
equations on general domains. However, achieving smoothness at extraordinary vertices (EVs) – while main-
taining the approximation power – is a challenging problem. Several approaches for solving this problem have
been explored in the rich literature on this topic. These may be classified into methods that (a) use the classical
notion of geometric continuity between surface patches (e.g., [3]), (b) employ singularly parameterized surfaces
(e.g., [2, 4]), (c) rely on subdivision surfaces (e.g., [5]) and (d) are based on the concept of manifolds from
differential geometry (e.g. [6]). Our work aims at applications in isogeometric analysis, where it is essential to
use discretization spaces spanned by relatively simple basis functions (suitable for efficient matrix assembly via
numerical integration), which also possess good approximation power, ideally guaranteed by theoretical results.
We focus on a construction of Prautzsch [7], which is based on composing polynomial mappings with spline
parameterizations. We show how to generate suitable basis functions in the vicinity of EVs and discuss the
approximation power of the resulting spline space.

Joint work with: Bert Jüttler
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An accurate description of the morphometry of the lung and airways is essential to enable numerical simu-
lations, related to the respiratory system, that are in line with the morphometric observations. The structure
of the lung is governed both by its respiratory functions and by the inherent hierarchy of the bronchial tree,
making it the complex organ that it is. The airways, defined by an asymmetric dichotomous tree, allow the
transport of air to the blood exchange zones and thus the supply of oxygen.

In this paper, we present a scalable algorithm for generating individual-specific 3D models of the bronchial
tree, based on morphological structures of the lung lobes and the first three generations of airways. These
structures are the result of further work to extract them from a person’s CT-Scan, using a Deep Learning
method of multi-class segmentation.

The algorithm we present is based on mesh preprocessing, calculating the centre of the largest ball inscribed
in a volume by an octree method, and applying physiological constraints.The statistical study of our model,
correlated with the different morphometric data, allows us to validate the accuracy and fidelity aspects. The
result is a 3D mesh of the lung surface and the bronchial tree that is suitable for numerical simulations.

(a) (b) (c)

Figure 1: Bronchial tree generation in 2D, with our model. (a) Subdivision of the closed area mesh with the cutting plane,
calculation of the barycentre and centroid and generation of daughter branches. (b) Repetition of the steps, (c) 3D mesh of the
bronchial tree.

Joint work with: André Galligo, Angelos Mantzaflaris, Benjamin Mauroy, Bernard Mourrain.
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For medical purposes, it is important to obtain an accurate geometry of the human lungs and more precisely
of the lung lobes, which are subdivisions of the lungs by the fissures. Deep Learning methods already exist,
generally using 3D segmentation algorithms, which are very demanding in terms of computing resources. It is,
moreover, a rather complex task, as two lung lobes are very similar when looking at their signal emitted on
CT-Scans, see the left figure below.

The lungs, as a whole, being easier to obtain, we based our work on this morphological structure which we
combined with a medial/skeleton structure process. We then started by extracting the lung structures from the
images, using a U-Net architecture method, which requires less computational resources. We have exploited this
architecture on the 3 CT-Scan planes (axial, coronal and sagittal), to create a 2.5D segmentation algorithm.

The next step is to generate a lung skeleton database from these morphological structures, using a package
from the CGAL library, and then train a classification algorithm to separate the lung skeleton into lobar
skeletons.

From these lobar skeletons and the lung geometry, we can then reconstruct the morphological structures
associated with the lobes.

Figure 1: Left to Right : Axial slice of a CT-Scan, Method to extract skeleton from lobar meshes
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Institut Camille Jordan, Université Claude Bernard Lyon 1
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In this talk, I will consider interaction energies Ef [L] between a point O ∈ Rd, d ≥ 2, and a lattice L
containing O, where the interaction potential f is assumed to be radially symmetric and decaying sufficiently
fast at infinity. The idea is to investigate the conservation of optimality results for Ef when integer sublattices
kL are removed (periodic arrays of vacancies) or substituted (periodic arrays of substitutional defects). In
particular, I will consider separately the non-shifted (O ∈ kL) and shifted (O 6∈ kL) cases and I will present
several general conditions ensuring the (non-)optimality of a universal optimizer among lattices for the new
energy including defects. Furthermore, in the case of inverse power laws and Lennard-Jones type potentials, I
will present necessary and sufficient conditions on non-shifted periodic vacancies or substitutional defects for
the conservation of minimality results at fixed density. Different examples of applications will be presented,
including optimality results for the Kagome lattice and energy comparisons of certain ionic-like structures. This
work can be read more in details in [1].
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We tackle the “trajectory inference” which problem arises when one tries to study biological processes with
new experimental technologies like single cell RNA sequencing and is interested in the evolution of cell states over
time. Indeed these technologies provide high dimensional measurements of cell states, but they are destructive
thus cannot track the trajectories of the cells over time.

We rephrase this problem as learning a curve valued in the space of probability distributions (a.k.a. Wasser-
stein space) and we explain how optimal transport, a mathematical theory which enables to compare probability
distributions and compute couplings between random variables, can be used to solve this problem and recon-
struct the temporal couplings as well as the trajectories and the fates of the cells. This method was tested on
synthetic and real data, in particular to study differentiation of cells in developmental biology. We will also
mention some of the theoretical challenges linked to this problem.

Joint work with: Stephen Zhang, Young-Heon Kim and Geoff Schiebinger.
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Surfaces possessing Pythagorean normal vector fields (PN surfaces) were introduced in [8] as surface coun-
terparts to the Pythagorean hodograph (PH) curves defined in [4]. PN surfaces have rational offsets and thus
provide an elegant solution to many offset-based problems occurring in various practical applications. When we
use as the defining property of these 2-surfaces in the Euclidean space R3 that they possess a polynomial/rational
area element we may extend the study to higher dimensions and consider also non-Euclidean metrics. For in-
stance in the Minkowski space R3,1 we obtain the so called MOS surfaces, see [5]. In addition, this approach
better captures the analogy with the PH curves which have a polynomial/rational length element, cf. [3].

It is interesting to study these objects both from a theoretical point of view and from the point of view of
applications (for instance with emphasis on interpolation and approximation techniques). It is also a challenge
to find which well known surfaces fall into the distinguished classes with Pythagorean property. We present some
examples of these shapes, some construction algorithms, their application in geometric modelling, categorize
recent results into a number of broad themes, and we also mention some open question in this area.

Joint work with: Michal Bizzarri, Jǐŕı Kosinka, Zbyněk Š́ır & Jan Vršek.
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In this talk I will consider closed curves drawn on a surface and look at topological or geometric questions
such as: Can this curve be deformed continuously to this other curve? What if we additionally require that the
length of the curves do not exceed some fixed length during the deformation? Among all continuous deformations
of a curve, what is the minimal number of self-intersections, or how long is the shortest curve?

I will survey recent techniques to answer these questions efficiently in a discrete setting where the curves
and the surface are described in a combinatorial way, say by closed walks on a triangulation.
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Abstract: The Fisher information metric provides a Riemannian framework to compare probability dis-
tributions inside a parametric family. The most well-known example is the univariate Gaussian case, where
the Fisher information geometry amounts to hyperbolic geometry. In this talk we will investigate the Fisher
information geometry of Dirichlet distributions, and beta distributions as a particular case. We show that it
is negatively curved and geodesically complete [1]. This guarantees the uniqueness of the notion of mean and
makes it a suitable geometry to apply the K-means algorithm, e.g. to compare and classify histograms [2].

Joint work with: Stephen Preston, Stéphane Puechmorel, Nicolas Guigui, Sana Rebbah.
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Sparse interpolation, also called Prony’s method or exponential analysis [1], consists in fitting a model of
the form

n∑

j=1

αj exp(φjt)

or
n∑

j=1

αjt
φj

to data yk collected at sample points tk for k = 0, . . . , N with N ≥ 2n− 1.
A drawback of the method is the fact that the interpolation data need to be collected equidistantly.

Variable projection [2] applies to so-called separable problems, in which data are fitted by a linear combina-
tion of simple functions characterised by some nonlinear parameters, such as the above models. The nonlinear
parameters are computed separately through optimisation and the linear coefficients are the solution of a least
squares problem.

A drawback is that the method, when applied to higher-dimensional problems, easily gets stuck in a local
minimum, unless one can supply a quite accurate starting point for the optimisation.

We consider some low-dimensional separable least squares problems of a Prony-like type, which offer the
advantage that the objective function can be written down analytically, following ideas from [3].

Joint work with: Costanza Conti (University of Florence, Italy) and Annie Cuyt (University of Antwerp,
Belgium).
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Poly., 1(22):24–76, 1795.

[2] Gene Golub and Victor Pereyra. Separable nonlinear least squares: the variable projection method and its
applications. Inverse Problems, 19(2):R1–R26, 2003.

[3] Yongliang Zhang, Annie Cuyt, Wen-shin Lee, Giovanni Lo Bianco, Gang Wu, Yu Chen, and David Day-Uei
Li. Towards unsupervised fluorescence lifetime imaging using low dimensional variable projection. Opt.
Express, 24(23):26777–26791, 2016.

131



High-dimensional hyperbolic wavelet regression using

low-dimensional structures

Laura Lippert
Chemnitz University of Technology

laura.lippert@math.tu-chemnitz.de

We propose a tool for high-dimensional approximation based on hyperbolic wavelet regression, where we only
allow low-dimensional dimension interactions. We adapt wavelets on the real axes to construct finite-dimensional
periodic wavelet spaces. For functions in Sobolev or Besov-Nikolskij spaces we give a characterization in terms
of the wavelet coefficients. This gives us certain decay of the wavelet coefficients. We study the problem of
scattered-data approximation, where we evaluate the basis functions at the given sample points, create a matrix
and solve the matrix equation with an LSQR-algorithm to get an approximation. In our case this matrix is
sparse, since we deal with compactly supported wavelets. If we choose the number of parameters such that we
have logarithmic oversampling, we can give a lower bound for the norm of the Moore-Penrose inverse, so that
the LSQR-algorithm gives useful results.
If we are concerned with i.i.d. samples, we show that the approximation error decays with the same rate as the
error of the projection onto the finite dimensional function space with high probability. We can even bound the
worst-case error for the whole class of functions in a Sobolev or Besov-Nikolskij space.
If the function has low effective dimension, we additionally determine the ANOVA decomposition of the approx-
imated function, which allows us to omit ANOVA-terms with low variance in a second step in order to increase
the accuracy.

Joint work with: Daniel Potts, Tino Ullrich.
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Neural fields [4] have proven a useful representation for surfaces. However, when coupled with a standard
pointclouds network and directly trained for surface reconstruction the resulting model often fails to generalize
beyond the training distribution of category and pose. I will discuss three recent works to tackle this issue.

1. Vector Neurons [1]: a framework for constructing rotation-equivariant 3D pointcloud networks that allows
shape reconstruction from arbitrary poses.

2. Learnable Kernel Fields [3]: a neural fields representation based on kernels that can generalize to out-of-
category shapes (see figure).

3. Lipschitz regularization [2] which promotes smooth latent space interpolation of neural fields.

Joint work with: co-author name 1, co-author name 2.
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Figure 1: Example results from LKF[3]
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The branched transport problem is a non-convex and non-smooth variational problem on Radon measures. In
this one tries to find an optimal mass flux F (in the Eulerian formulation a vector-valued measure) between two
given probability measures µ+ and µ−, which may for example describe the initial and final distribution of some
material. The optimality here is with respect to a subadditive transportation cost describing the effort τ(m)
to move an amount of material m per unit distance. The subadditivity of the transportation cost leads to a
branched structure of the network on which the transport described by F takes place. We study a convexification
of this problem to a multimaterial transport problem [1], which is also of its own interest. The cost function h
appearing in this relaxed problem is nonnegative homogeneous and describes the effort to move combinations
of certain artificially generated materials. With regard to the branched transport problem, for some cases one
can design the function h such that the relaxation is tight.

(1, 0)

(0, 1) (0, 1)

(1, 0) (1, 0, 0)

(0, 1, 0) (0, 0, 1)

(1, 1, 1)

One can for example use the multimaterial problem to model the Steiner problem of finding the network with
minimal total length connecting four nodes positioned at the corners of a square. In branched transport one
would use τ = 1(0,∞). Using the approach with two materials in the left picture, one does not obtain the right
solution to the Steiner problem (the network is not connected). The multimaterial distributions are indicated
through the vectors and marks at the nodes, ~µ+ = (δ(−`,`), δ(−`,−`)) and ~µ− = (δ(`,`), δ(`,−`)). The approach
with three materials in the right picture is the better choice: marking one point as the sink yields all possible
solutions. Alternatively, one can swap the entries of ~µ− in the left figure.
Using Fenchel’s duality theorem in combination with a result on the conjugation of integral functionals [2],
we view the multimaterial transport problem as the dual problem to a variant of the Kantorovich–Rubinstein
formula for the Wasserstein distance (which in its classical form is used to solve the transportation problem
with τ(m) = m). The primal-dual optimality conditions then naturally lead to our definition of a calibration,
a certificate for optimality of a minimizing candidate of the (dual) multimaterial transport problem. Further,
we relax the function space of the primal problem to ensure existence of solutions and simultaneously derive
the notion of a weak calibration. We give conditions under which a weak calibration can be represented by a
(strong) calibration and provide a procedure of how to construct a calibration from a weak calibration. Further,
we give examples of calibrations and will use them to prove properties of branched transport networks.

Joint work with: Bernhard Schmitzer, Benedikt Wirth.
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We propose a novel second-order ODE as the continuous-time limit of a Riemannian accelerated gradient-
based method on a manifold with curvature bounded from below. This ODE can be seen as a generalization
of the ODE derived for Euclidean spaces, and can also serve as an analysis tool. We analyze the convergence
behavior of this ODE for different types of functions, such as geodesically convex, strongly-convex and weakly-
quasi-convex. We demonstrate how such an ODE can be discretized using a semi-implicit and Nesterov-inspired
numerical integrator, that empirically yields stable algorithms which are faithful to the continuous-time analysis
and exhibit accelerated convergence.

Joint work with: Foivos Alimisis, Antonio Orvieto, Gary Bécigneul.
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In the last decades, the problem of distributing points on spheres and other spaces has attracted the atten-
tion of the mathematical community for both its theoretical interest and its numerous practical applications,
constituting nowadays a very active field of research (see [2], a monograph containing the most relevant results
to date). One of the main open problems in the area is Smale’s 7th Problem ([4]), posed by Shub and Smale in
[3], which asks for an algorithm for finding a collection of points in the sphere S2 whose logarithmic energy is
quasioptimal.

While for the sphere S2 we have constructive procedures to generate collections of points with low logarithmic
energy (see [1]), that is not the case in general for other spaces. In particular, one of the simplest spaces for
which there are no such constructive procedures is the real projective plane. In this poster we tackle the problem
of distributing points in this last space.

Joint work with: Carlos Beltrán, Ujué Etayo.
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The computational generation of curves and surfaces can be efficiently done by subdivision schemes. A
well-known linear interpolatory scheme for the generation of C1 surfaces is the butterfly subdivision scheme
[1], which is capable of exactly reproducing third degree bivariate polynomials (when the initial data is of this
kind). However, as most of the linear interpolatory schemes, it produces oscillations when the initial data has
large gradients. This is a usual situation when dealing with data coming from piecewise smooth function with
discontinuities.

In the univariate case, the authors in [2] explain how to transform a linear oscillatory scheme into a non-
linear non-oscillatory one. The key idea is to express the given scheme as a convex combination of other schemes
based on smaller stencil and, then, replace the linear averages appearing in the convex combination by non-linear
analogues.

Here, we extend the ideas of [2] to the bivariate case, in particular to triangular grids, and we design a
non-linear non-oscillatory version of the butterfly subdivision scheme.

This work may have applications in data compression and in the numerical solution of PDEs such as con-
servation laws.

Joint work with: Costanza Conti
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Piecewise polynomials over triangles and tetrahedrons have applications in several branches ranging from
finite element analysis, surfaces in computer aided design... The smoothness on tetrahedrons is obtained either
by high degrees of polynomials or using smaller degrees when splitting the tetraehedron into smaller pieces.

Here we consider the Alfeld split [1] which generalizes the Clough–Tocher split [2] of a triangle. To describe

it, let Ts := ⟨{p1,p1, . . . ,ps+1}⟩ be a simplex in Rs. Using the barycenter pTs
:=
∑s+1

j=1 pj/(s+ 1), we can split
Ts into s + 1 subsimplices Ts,j := ⟨{p1, . . . ,ps+1,pT \ {pj}⟩, j = 1 . . . , s + 1. On Ts we consider the linear
space of C1 piecewise polynomials of degree d ∈ N0

S1d,s := {f ∈ C 1(Ts) : f|Ts,j
∈ Pd(Rs), j = 1 . . . , s+ 1}.

We denote by [i; ℓ] : Rs → R the simplex spline with multiple knots {p[i1]
1 , . . . ,p

[is+1]
s+1 ,p

[ℓ]
T }, where the

multiplicity vector i = (i1, . . . , is+1) has nonnegative integer components. Generalizing [3], we consider degrees
d = 2s− 1 and construct a basis for S12s−1,s consisting of simplex-splines [i; ℓ] for suitable i and ℓ.

The first argument about the dimension was shown in [4], i.e. for d ∈ N0

dim
(
S1d,s

)
=

(
d+ s

s

)
+ s

(
d− 1

s

)
.

Secondly, we focus on two types of elements of S12s−1,s.

• Type (0): the elements corresponding to Bernstein polynomials (i; ℓ) = B2s−1
i−1 with ℓ = 0 and at least

one ij is equal to one ,

• Type (1): the elements (i; ℓ) with ℓ > 0, exactly one of the ij = 1 and the others ik ≥ 2.

Theorem: The set of elements of type (0) and (1) is a basis of S12s−1,s

The theorem is completed by propositions on Marsden Identities and Domain Points.

Joint work with: Tom Lyche, Dept. of Mathematics, Univ. of Oslo, Norway, tom@math.uio.no.
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Locally Linear Embedding [1] is a method for learning intrinsically low-dimensional data embedded in a
high-dimensional space, for example points sampled from an underlying surface. It constructs a neighbourhood-
preserving embedding and recovers the global nonlinear structure of the data from locally linear fits.

In the method, neighbourhoods are described using affine barycentric coordinates. This construction makes
them invariant to rotations, translations and rescaling and thus should characterise the intrinsic local geometric
properties of the data. Therefore, it is expected that the final embedding reflects the intrinsic structure of the
data. However, some experiences have shown that these coordinates may not be rigid enough and could allow
for unwanted reconstruction patterns [2].

In this work, we try to characterise under which assumptions, especially on the neighbourhood graph,
the reconstruction is unique up to affine transformations. At the same time, we look for new invariants of
local barycentric coordinates in order to predict the properties of the embeddings constructed by Locally Linear
Embedding. Ultimately, we hope to understand better which part of the global structure of the data is recovered
by the method and which is not.

(a) Data points. (b) Neighbourhood graph. (c) Embedded points.

Figure 1: Some effect of the neighbourhood graph’s connectivity in Locally Linear Embedding.

Joint work with: Xavier Pennec and Alain Trouvé.
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(a) (b) (c) (d) (e)

Figure 1: (a): isophotes on ACC3 surface. (b): isophotes on our G1 surface. (c): isophotes and curvature
analysis for each of the four solving strategies. (d)-(e): surfaces from complex meshes with many of EVs.

In this work a new construction of a globally G1 smooth family of Bézier surfaces, defined by smoothing
masks approximating the well-known Catmull-Clark (CC) subdivision surface, is presented. The resulting
surface is a collection of Bézier (quad) patches, which are bicubic C2 around regular vertices and biquintic G1

around Extraordinary Vertices (EVs) i.e., in our case, vertices with valence N 6= 4. Starting from the work of
Loop and Shaefer [1], which provides a bicubic approximation of the CC limit surface with only C0 regularity
around EVs, we improve this construction to reach a surface with global G1 smoothness. From the bicubic case,
applying twice the classical degree elevation algorithm for Bézier surfaces, we achieve enough degree of freedom
to impose G1 conditions between adjacent patches: those conditions are assigned making use of quadratic gluing
data functions [2] around EVs which depends just on their valence. This construction leads to a linear system
of seven equations per interior edge to be solved: each equation involves smoothing masks of symmetric control
points with respect to the edge. In the case of inner EVs, i.e. not lying on a boundary, some equations lead
to (degenerate) circulant system to be solved and some return direct constrains: in all cases, we are able to
solve in an explicit way these relations. We present explicit formulas for G1 smoothing masks; moreover, these
solutions possess degrees of freedom which can be fixed arbitrary. The entire system presents more than a way
to be solved, and this yields a family of G1 solutions; between all the possible solving strategies, we identify four
of them and we analyze each to determine the best solving strategies returning the smoothest surface. In order
to assert the quality of the resulting surfaces and identify the ones that lead to the best result, both visually
and numerically, we conduct curvature analysis on an extensive benchmark of meshes with different features.
We also treat the case of EVs on boundaries; in this setting, we keep unaltered the boundary masks for the
ACC3 surface presented in [1] and we force the inner edges to satisfy the G1 relations. Similarly to the inner
case, this construction leads to explicit formulas for G1 smoothing masks.

The resulting construction is described by explicit masks applied to the input control mesh, providing efficient
computation and fast rendering of smooth piecewise polynomial surfaces of low degree and arbitrary topology.

Joint work with: Angelos Mantzaflaris, Bernard Mourrain.
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This talk considers the problem of computing a linear approximation of quadratic Wasserstein distance
W2. In particular, we compute an approximation of the negative homogeneous weighted Sobolev norm whose
connection to Wasserstein distance follows from a classic linearization of a general Monge-Ampére equation. We
reduce the computational problem to solving an elliptic boundary value problem involving the Witten Laplacian,
which is a Schrödinger operator of the form

H = −∆ + V,

where V is a potential that depends on f , see Figure 1. We show that this connection provides a method of
computation whose computational cost can be controlled by the amount of regularization used when defining
the potential. For the case of probability distributions on the unit square [0, 1]2 represented by n×n arrays we
present a fast code and several numerical examples demonstrating this approach.
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Figure 1: An example of a function f (left) and its regularized potential V (right).

The connection between the weighted negative homogeneous Soboelv norm and the Witten Laplacian has a
number of interesting applications; in particular, we discuss applications to defining an embedding and smooth-
ing. First, given probability density functions f, g, h we define an embedding g 7→ Φf (g) such that

‖Φf (g)− Φf (h)‖L2 ≈W2(g, h),

whenever g and h are close to f (in a precise sense). Second, we consider the problem of smoothing g with
respect to a diffusion defined by f . In particular, we define the diffusion operator

g 7→ e−τHg,

where H is the Witten Laplacian whose potential depends on f , and τ > 0 is the diffusion time parameter
that controls the amount of smoothing. Further applications and connections to other methods will also be
discussed.

Joint work with: Philip Greengard, Jeremy G. Hoskins, Amit Singer

References

[1] Philip Greengard, Jeremy G. Hoskins, Nicholas F. Marshall, and Amit Singer, On a linearization of quadratic
wasserstein distance, arXiv e-print (2022).

141



On gradient-based methods for ptychography

Oleh Melnyk
Helmholtz Center Munich, TU Munich
oleh.melnyk@helmholtz-muenchen.de

Ptychography is a lenseless imaging technique which became popular among the practitioners in last two
decades. It considers a series of illuminations of the object of interest, where at a time a small region of the
specimen is illuminated and the resulting diffraction pattern is captured by the detector in the far-field. As the
regions overlap, this provides a surplus information and allows for a recovery from the collection of the observed
diffraction patterns.

The rising popularity of ptychography sparked the rapid development of reconstruction algorithms [1, 2, 3].
Furthermore, many of the well-known and established methods for phase retrieval [4, 5, 6, 7] were adapted for
ptychography since it can be viewed as a special case of the phase retrieval problem. With the large number
of algorithms present, it is inevitable that some of the techniques share similarities and the analysis for one
approach can be used to study another.

In this talk we consider three of the methods present in the literature. The first is the gradient descend
technique for amplitude-based squared loss known as Amplitude Flow [7]. The second is the Error Reduction
algorithm [4, 6], which is the alternating projections approach. The last is the Ptychographic Iterative Engine
(PIE) [1, 2], a computationally fast method utilizing a single diffraction pattern at the time.

We show that the later two algorithms can also be viewed as the gradient methods for the same amplitude-
based squared loss function. More precisely, we show that Error Reduction performs the scaled gradient descent
and PIE is nothing else but the stochastic gradient descent. Based on the convergence theory for Amplitude
Flow, we further establish the guaranteed convergence of both algorithms and show that the convergence speed
is sublinear. We also discuss the implications of the algorithms being the gradient methods for the amplitude-
based squared loss in terms of critical points.

Lastly, we compare their performance numerically. That is, the robustness of reconstruction under noise and
the computation times are reported for synthetic data and the resulting reconstructed objects are presented.
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Regular circular quad-meshes with certain tangent data were used for smoothly blending principal Dupin
cyclide patches [1]. Later this approach was extended in [2, 3] by allowing any 2n-sided faces by filling them
with virtually infinite rings composed of principal patches, when n > 2. Now we improve this approach: if all
corner vertices of 2n-sided hole are on a circle then this hole can be smoothly filled with the ring of 4n principal
patches and one planar/spherical 2n-sided patch in the middle. The method is demonstrated in the case of
3-beam corner in the left-side figure below.

Smooth blending of triangular patches of Dupin cyclides along principal diagonal curves is investigated and
expected to have more flexibility in modeling surfaces with arbitrary topology. In the case of cubic cyclides, the
spline construction dual to Powell–Sabin elements [4] was extended by introducing foldings and branchings of
the Gaussian map. In particular, this approach allows us to blend patches with different signs of curvature as
well as to model monkey saddles (see middle and right figures below).

In order to track singularities Möbius classification of principal patches and principal diagonal curves was
investigated. Furthermore, some topological restrictions on cyclide splines were derived when they are not
containing planar or spherical patches:

� if the surface is closed (without boundary) then it is of torus topology;

� if the surface is simply connected and its boundary is composed of principal circles then the sum of its
angles is the same as for a polygon with the same number of corners on a plane.

This proves that planar/spherical patches cannot be avoided in the hole-filling solution described above.

Joint work with: Rimvydas Krasauskas.
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The task of creating mathematical representations of free-form surfaces from scattered data is an important
and therefore well-studied problem [1], which is particularly challenging and useful in industrial applications
[2, 3]. Least-square fitting by tensor-product spline surfaces is a well-established method for approximating
unstructured data, and is widely used in industry.

However, assembling the system of equations via the straightforward approach can be quite time–consuming.
We propose to accelerate this process by employing the technique of sum factorization, which is frequently used
in the context of isogeometric analysis, [4, 5].

Our approach consists of two steps. First, we introduce a regular grid onto which the parameters of the
unstructured data are projected. Consequently, the expressions of the matrix entries can be rewritten in
the structure of nested sums using the tensor-product and grid structure. This form admits the use of sum
factorization, which is then employed in the second step. This novel approach has the potential of significantly
reducing the computational effort of the matrix assembly, which is a substantial part of the overall computation
time.

In this presentation, we provide estimates on the complexity of both the matrix assembly via the straight-
forward approach and via our approach. Furthermore, we quantify the expected relative assembly cost of the
new method with respect to the standard method. We give several examples, including an example involving
industrial data, to demonstrate how the choice of the grid influences speed, precision, and quality of the results,
and confirm the expected time savings of the proposed method.

Joint work with: Bert Jüttler, Dominik Mokrǐs, Maodong Pan.
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The construction of multiwavelets on a bounded interval, which can preserve most of their original properties
on the real line, is fundamental in theory and applications (e.g., images and numerical PDEs). Except for a
few concrete examples, no systematic construction method for multiwavelets on a bounded interval is available.
Hence, given any compactly supported biorthogonal multiwavelet on the real line, we present a direct approach,
to construct all possible locally supported biorthogonal multiwavelets on [0,1] satisfying prescribed vanishing
moments, polynomial reproduction, and homogeneous boundary conditions. It neither explicitly involves dual
refinable functions nor dual multiwavelets. For the sake of illustration, some examples of orthogonal and
biorthogonal multiwavelets constructed on [0,1] will be given.

Joint work with: Bin Han.
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Jǐŕı Minarč́ık
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This work introduces new geometric flow for space curves with positive curvature and torsion. Curves
evolving according to this motion law trace out a zero mean curvature surface. We present properties of the
motion law, discuss its limitations and outline future work directions.

Joint work with: Michal Beneš
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For µ > 0, let

(f, g)µ = f(0) g(0) + λ

∫

B2

∇f(x) · ∇g(x) (1− ||x||2)µdx, λ > 0,

be a Sobolev inner product defined on the linear space of polynomials of d variables. Here ∇f is the gradient
of f , Bd is the unit ball of Rd and ||x|| is the usual Euclidean norm of x ∈ Rd. In this work, we determine
an explicit orthogonal polynomial basis associated with (·, ·)µ and study approximation properties of Fourier
expansions in terms of this basis. In particular, we deduce relations between the partial Fourier sums in terms
of the Sobolev polynomials and the partial Fourier sums in terms of the classical ball polynomials. We give an
estimate of the approximation error by polynomials of degree at most n in the corresponding Sobolev space.
We also give upper bounds for the reproducing kernels for the Sobolev projection operators on the space of
polynomials of degree at most n.

Joint work with: Marlon J. Recarte, Teresa E. Pérez, Miguel A. Piñar.
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Optimal transport or OT [PC19] has become a relevant tool in various machine learning applications. The
rising popularity of OT is because it gives a principled approach in exploiting the underlying metric geometry to
develop different notions of distances between probability distributions to be used in downstream applications.
Consequently, there have been many works on developing computationally efficient tools to solve OT problems.

In this presentation, we look at the Riemannian approach to solving OT related optimization problems.
The Riemannian approach has also got popular for solving structured nonlinear optimization problems [Bou20].
To that end, we discuss some of the recent works on exploiting Riemannian manifold structures to develop
optimization-related ingredients for tackling OT formulations [HMJG22, MSKJ21]. We also look at various
challenges and opportunities that lay ahead in making Riemannian tools a viable alternative for OT practition-
ers.

Joint work with: Andi Han, Pratik Jawanpuria, and Junbin Gao.
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MTU Aero Engines is Germany’s leading engine manufacturer and an established global player in the
industry. We engage in the design, development, manufacture and maintenance of aircraft engines in all thrust
and power categories as well as of stationary gas turbines. These activities are supported by a broad spectrum of
CAE (Computer-Aided Engineering) tools and processes. In particular, underlying the aerodynamic simulations
is the in-house geometry generation software.

The last years have seen growing precision and availability of 3D scanning tools. Hand-in-hand with it grows
also the interest of our engineers to use the scanned data as an input of the geometry generator and to convert
them into high-quality NURBS surfaces suitable for further use. While considerable effort has been spent on
improving this process (see, e.g., [1, 2, 3, 4]), high expectations of our users mean that there is always room for
further improvement.

In this talk, I will show an early-stage work from this area. Assuming that the input data are a two-
dimensional grid of scalars, one can write them in a matrix form. Instead of approximating them directly with
a bivariate tensor-product function, a low-rank approximation of this matrix can be constructed in the form

Z ≈
s∑

r=1

trur ⊗ vr .

For each ur and vr a univariate least-squares approximation can be computed, thus obtaining vectors dr and
er, respectively, of control points. These control points can be re-assembled into a matrix form

C =
s∑

r=1

trdr ⊗ er .

Taking C as control points of a bivariate spline function yields a good approximation of the original data Z.
This method is a generalization of an existing approach presented in [5]. However, there are two new

contributions. First, using least-squares approximation instead of interpolation leaves more freedom in the
choice of the data parametrization and fitting basis. Second, we prove that when s is equal to the rank of the
data matrix Z, then the elements of C are in fact the control points of the bivariate least-squares approximation
of Z. Additionally, this approach is generalized to weighted least-squares with separable weights, which is of
advantage, e.g., when approximating functions in L2-sense using quadrature rules.

Joint work with: David Großmann and Bert Jüttler.
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[4] S. Merchel, B. Jüttler and D. Mokrǐs. Adaptive and local regularization for geometry reconstruction by
tensor-product spline surfaces. Submitted.

[5] I. Georgieva and C. Hofreither. An algorithm for low-rank approximation of bivariate functions using splines.
J. Comput. Appl. Math., 310: 80–91, 2017.

149



Hodograph based shape control for polynomial curves

Hwan Pyo Moon
Department of Mathematics, Dongguk University–Seoul, Korea

hpmoon@dongguk.edu

Although Bézier control polygons are useful tools to express and control the shape of polynomial curves, they
are not suitable to control Pythagorean hodograph (PH) curves, since any slight modification of a single Bézier
control points make the curve lose the PH property. To remedy this problem, different types of control polygons
such as the Gauss–Legendre polygon [1, 2] and the Gauss–Lobatto polygon [2] were introduced. In this work,
we analyze the shape control functionality of these polygons from the viewpoint of hodographs. Edges of these
polygons can be understood as points in the hodograph space, and the curve construct process corresponds to
computing the hodograph that interpolates the velocity data followed by integrating it. This approach can be
applied not only to PH curves but also to general polynomial curves.
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The Gauss–Legendre polygon was developed [1, 2] as the rectifying control polygon of Pythagorean hodo-
graph (PH) curves, whose length is the same as the arc length of the corresponding PH curve. We here focus on
the polynomial basis for the Gauss–Legendre polygon. As a Bézier curve is expressed as the linear combination
of the Bézier control points with the coefficients given by the Bernstein polynomials, a PH curve can be ex-
pressed as the linear combination of the Gauss-Legendre control points with the coefficients determined by some
polynomials, which we call the Gauss–Legendre polynomials. We show that the Gauss–Legendre polynomials
can be constructed from the Lagrange interpolator defined over the roots of the Legendre polynomials. We in-
vestigate various properties of the Gauss–Legendre polynomials including symmetry, partition of unity, critical
points, derivatives, and integrals. We also analyze the pros and cons of this polynomial over other polynomials.

Joint work with: Hwan Pyo Moon, Song-Hwa Kwon.
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Hermite subdivision schemes are iterative refinement algorithms which produce a function and its derivatives
in the limit. In this talk we are interested in Hermite subdivision schemes which reproduce polynomials of high
degree. We show that this can be characterized by operator factorizations involving Taylor operators and
difference factorizations of a rank one vector scheme. Explicit expressions for these operators are derived, which
are based on an interplay between Stirling numbers and p-Cauchy numbers. Furthermore, we discuss how this
framework can be used to prove high smoothness of the limit functions.

The talk is based on the papers [1, 2].

Joint work with: Costanza Conti, Svenja Hüning, Tomas Sauer.
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In recent years, bi-level optimization has raised much interest in the machine learning community, in particu-
lar for hyper-parameters optimization [4] and implicit deep learning [1]. Bilevel optimization aims at minimizing
a function whose value depends on the result of another optimization problem, that is:

min
x∈Rd

h(x) = F (z∗(x), x) ,

such that z∗(x) ∈ arg min
z∈Rp

G(z, x) ,
(1)

where F and G are two real valued functions defined on Rp × Rd. This type of problems is often tackled
using first-order that requires the computation of the gradient of h, whose expression can be obtained using the

implicit function theorem: ∇h(x) = ∇2F (z∗(x), x) − ∇2
2,1G(z∗(x), x)

[
∇2

1,1G(z∗(x), x)
]−1∇1F (z∗(x), x). The

computation of this gradient requires the computation of matrix-vector products involving the inverse of a large
matrix ∇2

1,1G, which is computationally demanding.
In our work [5], we propose a novel strategy coined SHINE to tackle this computational bottleneck when

the inner problem G can be solved with a quasi-Newton algorithm. The main idea is to use the quasi-Newton
matrices estimated from the resolution of the inner problem to efficiently approximate the inverse matrix in the

direction needed for the gradient computation
[
∇2

1,1G(z∗(x), x)
]−1∇1F (z∗(x), x). We prove that under some

restrictive conditions, this strategy gives a consistent estimate of the true gradient. In addition, by modifying
the quasi-Newton updates, we provide theoretical guarantees that our method asymptotically estimates the true
implicit gradient under weaker hypothesis.
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Figure 1: Convergence of test loss for different hyperparameter optimization
methods on the ℓ2-regularized logistic regression problem for the 2 datasets
(20news and real-sim).

Figure 1 shows on a clas-
sical hyperparameter optimiza-
tion benchmark [4] that our
method accelerate the resolu-
tion of the bi-level problem
compare to HOAG [4] and the
Jacobian-Free method that re-
place the inverse by the iden-
tity. Experiments for multi-
scale Deep-Equilibrium net-
works (DEQ [2]) in [5] ap-
plied to CIFAR10 and Ima-
geNet show that SHINE re-
duces the computational cost
of the backward pass by up to
two orders of magnitude, while
retaining performances close to
the original training methods. While these results are encouraging, our method still suffer from small perfor-
mance drop on DEQ for ImageNet, leaving room for further improvement.

Joint work with: Z. Ramzi, S. Bai, F. Mannel, J.-L. Stark and P. Ciuciu.
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Geometrically Smooth Splines for IGA
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Geometrically smooth (G1) spline functions are piecewice polynomial functions defined on a mesh, that
satisfy properties of differentiability across shared edges. They can be used to extend Isogeometric Analysis
approaches on surfaces of arbitrary topology.

In this presentation, we consider G1 splines on quadrangular meshes with given quadratic glueing data along
shared edges. We describe briefly their properties, analyse their spaces, and provide dimension formula.

Computing efficiently basis functions for these spaces is critical in the IGA approach. We investigate this
problem and show how to construct efficiently such bases and how different choices of basis functions can
influence output results in IGA methods. A few experimentation illustrate these developments.

Joint work with: Michelangelo Marsala, Angelos Mantzaflaris
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Robust Eigenvectors of Symmetric Tensors
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With the rising demand for techniques to handle massive, high-dimensional datasets, many scientists have
turned to finding adaptations of matrix algorithms to high-order arrays, known as tensors. In particular, the
notions of eigenvalues and singular values can be generalized to the tensor case, which are particularly important
due to their link to the rank-one approximation problem. The main obstacle, however, is that computing these
quantities can be an NP-hard problem [1] for a general tensors. However, for a special case of orthogonal tensors,
eigenvectors are well understood. In this talk, we report new results on eigenvectors of symmetric tensors and
convergence of tensor power method for non-orthogonal case [4].

A real order d tensor T ∈ Rn×...×n is said to be symmetric if for all permutations of indices Ti1,...,id =
Tiσ(1),...,iσ(d)

. A vector v ∈ Rn is an eigenvector of T with eigenvalue µ ∈ R if

T · vd−1 = µv,

where T ·vd−1 is a vector defined by contracting T by v along all of its modes except for one. The eigenvectors
of T are the fixed points (up to sign) of an iterated method called the tensor power method given by

xk+1 7→ T · xd−1
k

∥T · xd−1
k ∥

.

Yet another important characterization of the eigenvectors is that [2] they are the critical points of the symmetric
best rank-one approximation problem minc,v ∥T − cv⊗d∥2F .

A non-symmetric version ot the tensor power method for non-symmetric tensors is known to be globally
convergent [5]. For the symmetric case, fewer results are available on the convergence, examples are known
when the method does not converge at all [2]. Our main result gives a sufficient condition on an eigenvector to
be robust (i.e., to be an attracting fixed point of the power iteration).

Theorem 1. let Td be a symmetric n× · · · × n order-d tensor with symmetric decomposition

Td =

r∑

i=1

λiv
⊗d
i , (1)

with ∥vi∥ = 1 for all i. Then there exists a D ∈ N such that for all d ≥ D, if vj is an eigenvector of Td with
non-zero eigenvalue, then vj is a robust eigenvector of Td.

Theorem 1 allows us to obtain find eigenvectors for some classes of non-orthogonal tensors, where the vectors
vj belong to an equiangular set or an equiangular tight frame, see [3] for more details.

Joint work with: Tommi Muller (University of Oxford), Elina Robeva (Univesity of British Columbia).
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A new family of non-uniform subdivision scheme with

two tension and one shape parameters.
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Abstract

In this paper, we propose a new non-uniform subdivision scheme that includes a tension and shape
parameters sequence. Each form parameter of the sequence is assigned at each edge of the initial control
polygon. The proposed scheme can produce limiting curves that are more consistent with the original data
points and the control polygon. It has also the advantage of generating a wide variety of shapes for the
limiting curves. The convergence and smoothness of the proposed scheme are proven by using the asymptotic
equivalence concept. Numerical results that illustrate the advantages of the proposed non-uniform scheme
are given.

Joint work with: Abdellah Lamnii, Ahmed Zidna.
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Approximation classes of tree tensor networks
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Tree Tensor networks (TTNs) are prominent model classes for the approximation of high-dimensional func-
tions in computational and data science. After an introduction to approximation tools based on tensorization
of functions and TTNs, we introduce their approximation classes and present some recent results on their prop-
erties. In particular, we show that classical smoothness (Besov) spaces are continuously embedded in TTNs
approximation classes. For such spaces, TTNs achieve (near to) optimal rate that is usually achieved by clas-
sical approximation tools, but without requiring to adapt the tool to the regularity of the function. The use
of deep networks is shown to be essential for obtaining this property. Also, it is shown that exploiting spar-
sity of tensors allows to obtain optimal rates achieved by classical nonlinear approximation tools, or to better
exploit structured smoothness (anisotropic or mixed) for high-dimensional approximation. We also show that
approximation classes of tensor networks are not contained in any Besov space, unless one restricts the depth
of the tensor network. That reveals again the importance of depth and the potential of tensor networks to
achieve approximation or learning tasks for functions beyond standard regularity classes. In particular, it is
shown that some discontinuous or even nowhere differentiable functions can be approximated with exponential
convergence rates, and that some classes of compositional functions can be approximated without the curse of
dimensionality.

Joint work with Mazen Ali, Markus Bachmayr and Reinhold Schneider.
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Minimum Height Drawings of Ordered Trees in

Polynomial Time: Homotopy Height of Tree Duals
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We consider minimum height drawings of graphs in the plane. We define the height of a drawing as the
minimum value h such that any vertical line intersects the drawing in at most h points. Given a simple drawing
of a planar graph, we are looking for a homeomorphism of the plane that minimizes the height of the resulting
drawing. This problem is equivalent to the homotopy height problem in the plane, and the homotopic Fréchet
distance problem. These problems were recently shown to lie in NP, but no polynomial-time algorithm or NP-
hardness proof has been found since their formulation in 2009. We present the first polynomial-time algorithm
for drawing trees with optimal height. This corresponds to computing the homotopy height of triangulations
consisting of a single vertex incident to a set of loops.

Joint work with: Salman Parsa.
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Subspaces for Simulation of Deformations and Contact
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As we approach a new world of interaction between the real and the virtual, one of the grand challenges is
to create accurate, robust, and efficient digital models of humans and their interaction with their surroundings.
Such digital models can serve to understand and digitalize the real world, to represent digital twins in the
context of digital design, testing, and training, or also to create virtual worlds.

We propose to address the complexity of digitizing human biomechanics and the interaction of humans
and surrounding objects by combining two fundamental methodologies of computational modeling: physics-
based simulation and machine learning. The cornerstone of the approach lies in building subspace models of
human biomechanics, object deformation, and human-object interaction that tightly connect physics-inspired
and machine-learning representations. Such tight connection can lead to (1) effective simulation models with
a superior cost-accuracy trade-off, and (2) robust model estimation algorithms with superior conditioning of
the search space. Subspace models employ a parameterization of the deformation and interaction space that
is decoupled from the discretization of object deformation, and hence allow more efficient simulations with
comparable accuracy. However, finding suitable subspace representations is not easy.

In our research group, we have already gathered evidence of successful combinations of physics-based and
machine-learning representations to build subspace simulation models, as summarized in the figure above.
Santesteban et al. [2] augmented parametric human models with skeleton-driven dynamic deformations. Tapia
et al. [4], on the other hand, endowed these augmented deformation dynamics with a physics-based model
to support contact interactions. Santesteban et al. [3] designed a subspace of learning-based cloth animation
that is inherently collision-free. And Romero et al. [1] developed a machine-learning model of contact-driven
dynamic deformations. These recent works span subspace representations for skeleton-driven or physics-based
deformations, with and without contact.

Joint work with: Igor Santesteban, Cristian Romero, Javier Tapia, Jesús Pérez, Dan Casas.
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Efficient and robust learning on non-rigid surfaces
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In this talk I will describe several approaches for learning on curved surfaces, represented as point clouds or
triangle meshes, undergoing non-rigid deformations. I will first give a brief overview of geodesic convolutional
neural networks (GCNNs) and their variants [1] and then present a recent approach based on diffusion. The
key properties of this approach is that it avoids potentially error-prone and costly operations with robust and
efficient building blocks that are based on learned diffusion and gradient computation [2]. I will then show several
applications, ranging from RNA surface segmentation to non-rigid shape correspondence, while highlighting the
invariance of this technique to sampling and triangle mesh structure.

Joint work with: Nick Sharp, Souhaib Attaiki, Keenan Crane
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Computing with trivariate splines on irregular meshes
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Defining differentiable spline spaces over irregular hexahedral partitions has applications in modelling as well
as solving differential equations. This talk gives an overview of possible approaches, and recent experiments to
establish optimal convergence order for the weak formulation of second and fourth-order equations.

Joint work with: Jeremy Youngquist
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in solid toroidal domains
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We present an IGA discretization of the continuous de Rham complex by means of adequate spline spaces
which assemble in a discrete complex sustaining the same cohomological structure, when the underlying physical
domain is a toroidal solid. Discretizations preserving such homological invariant of the physical model are
commonly exploited in electromagnetics to obtain numerical solutions satisfying important conservation laws at
the discrete level. Thereby one avoids spurious behaviors and, on the contrary, improves accuracy and stability.

The toroidal geometries are of particular interest, for example, in the context of magnetically confined
plasma simulations. The singularity of the parametrization of such physical domains demands the construction
of suitable restricted spline spaces, called polar spline spaces, ensuring an acceptable smoothness to set up the
discrete complex.
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Isogeometric Immersed Methods
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In engineering applications, the description of the geometry and the mesh generation process are often
bottlenecks in finite element approximations of elliptic boundary value problems. Some efforts have been made
to develop meshless methods. However a central problem of such methods is to incorporate boundary conditions
of Dirichlet type.

This motivates the interest in immersed boundary and interface methods, also known as fictitious domain or
embedded domain methods. The traditional philosophy of immersed boundary methods is to embed the com-
putational domain in a structured grid and employ simple, mesh-aligned numerical schemes. Clearly, immersed
methods require a proper treatment of the cells that are cut by boundaries and/or interfaces with some special,
and often ad hoc, technique to achieve acceptably accurate results.

Moreover, one of the current challenges both in CAD and IgA is dealing with trimmed geometries. Indeed,
the most common description of CAD models is the B-rep, where an object is represented by its boundary
surfaces, described by suitable geometry maps on the parametric domain. Often only certain regions of a
surfaces are supposed to be part of the actual object and the unused areas are trimmed away. Trimming
results in identifying complex geometries in the parametric domain which can be treated following an immersed
approach.

In this talk we aim to present our ongoing results on immersed boundary Isogeometric analysis based on B-
splines/NURBS defined in both rectangular and triangular regular meshes, for general, non-constant coefficients,
elliptic problems.

Joint work with: Carla Manni, Hendrik Speleers.
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Implicit Bias of SGD for Diagonal Linear Networks:

a Provable Benefit of Stochasticity
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Understanding the implicit bias of training algorithms is of crucial importance in order to explain the success
of overparametrised neural networks. We study the dynamics of stochastic gradient descent over diagonal linear
networks through its continuous time version, namely stochastic gradient flow. We explicitly characterise the
solution chosen by the stochastic flow and prove that it always enjoys better generalisation properties than
that of gradient flow. Quite surprisingly, we show that the convergence speed of the training loss controls the
magnitude of the biasing effect: the slower the convergence, the better the bias. To fully complete our analysis,
we provide convergence guarantees for the dynamics. We also give experimental results which support our
theoretical claims. Our findings highlight the fact that structured noise can induce better generalisation and
they help explain the greater performances of stochastic gradient descent over gradient descent observed in
practice.

Figure 1: Left (Drawing): For diagonal linear networks, the solutions recovered by SGD and GD differ. Right :
Sparse regression with n = 40, d = 100, ∥β∗

ℓ0
∥0 = 5, xi ∼ N (0, I), yi = x⊤i β

∗
ℓ0

. 2-layer diagonal linear network.
SGD converges towards a solution which generalises better than GD, the sparsifying effect due to their implicit
biases differ by more than an order of magnitude.

Joint work with: Loucas Pillaud-Vivien, Nicolas Flammarion
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Many low-complexity regularizers such as `1 or nuclear norm regularisation admit a quadratic variational
form and this is the basis of the celebrated iteratively re-weighted least squares (IRLS) algorithms. In this
work, we show how a simple re-parametrization of IRLS coupled with a bilevel formulation can lead to a
smooth non-convex optimisation problem that can be handled with robust numerical procedures such as BFGS.
Our formulation allows us to efficiently handle many popular optimisation settings, including the Lasso, total
variation regularisation problems, sparsity problems with linear constraints, robust losses (such as the `1 loss), as
well as non-convex `q minimisation. Our numerical benchmarking experiments demonstrate that this approach
is highly versatile, leading to substantial performance advantages in a wide range of settings.

In additional to enabling the use of robust smooth optimisation tools, some of the reasons for the favourable
behaviour of our proposed method are as follows. Although the resultant problem is non-convex, we show that
there are no spurious minima since all saddle points are strict. Moreover, in the “fine-grids” setting where
the columns of the matrix can be highly coherent with each other (this often occurs due to discretization in
continuous problems), this re-parametrization leads to dimension free convergence rates – this is in stark contrast
typical optimisation schemes based on the Euclidean distance such as Forward-Backward where convergence
rates depend on the problem dimension.

Joint work with: Gabriel Peyré
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Surfaces with a constant ratio of principal curvatures
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Motivated by applications in architectural geometry [1], we study and compute surfaces with a constant
ratio a = κ1/κ2 of principal curvatures (CRPC surfaces). While the special case of minimal surfaces (a = −1)
is very well understood and has been studied in great detail, almost nothing is known about general CRPC
surfaces.

Our computational approach is based on discrete differential geometry and numerical optimization [2, 3].
We discretize the so-called characteristic parameterizations of CRPC surfaces. For negative Gaussian curvature
K, these parameterizations are asymptotic. For positive K they are conjugate and symmetric with respect to
the principal curvature directions. CRPC surfaces are characterized by a constant angle between the parameter
lines of the characteristic parameterization.

The developed computational methods also serve as an experimental basis for mathematical studies of the
largely unexplored class of CRPC surfaces. Some phenomena suggested from computational results have already
been verified by mathematical analysis. This concerns the classes of helical and spiral CRPC surfaces, for which
we can provide explicit parameterizations and a study of the arising shapes.

Joint work with: Yang Liu, Olimjoni Pirahmad, Hui Wang.
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Joint work with: Charles Poussot-Vassal (ONERA, Université de Toulouse, Toulouse, France), Pierre Vuillemin
(ONERA, Université de Toulouse, Toulouse, France), and Athanasios C. Antoulas (Rice University, Houston,
Max Planck Institute, Magdeburg, Germany and Baylor College of Medicine, Houston, USA).

The Loewner matrix pencil is an essential component of the realization and model reduction method for
dynamical systems, originally proposed in [2] (known as the Loewner framework). This method was initially
derived to construct reduced-order models (ROMs) of linear dynamical systems from data. More precisely,
the transfer function of the ROM interpolates the original input-output data set corresponding to samples of
a (rational) transfer function, or even of a complex irrational function (by enforcing rational approximation).
Here, we are interested in the latter interpretation. We �rst describe a computationally and numerically simple
procedure to estimate the "non-trivial" (harmonic) zeros of the famous Riemann ζ ("zeta") function (based on
the Loewner framework); preliminary results are shown in Fig. 1. These approximated zeros are then used to
recover the corrected Riemann prime counting function [1], approximating the prime number cardinality. We
illustrate how e�cient the Loewner framework is to recover this speci�c stair shape function.
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Figure 1: Left: comparison of the original and approximated functions for y ∈ [0, 100]. The zeros of each
functions respectively are ρ1/2 (blue circles) and ρ̂1/2 (red crosses). Right: exact (blue rounds) and estimated
(red crosses) non-trivial complex zeros of the ζ function (x: real part, y: imaginary part). Relative point-wise
mismatch error (black stars).
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In Chaikin’s algorithm, we iteratively smooth a polygonal line by cutting corners such that we arrive at a
quadratic spline in the limit. For this and other edge preserving corner cutting schemes, we have de Boor’s most
general result that the limiting curve is differentiable if and only if the maximum angle flattens out eventually.
In this talk, I will discuss face preserving cutting for convex polyhedra, explain why de Boor’s result can not
easily be generalized, go through counter examples and present results. Further, I introduce our 4-8 and 4-6-8
schemes, show outcomes of ongoing experiments, and may also briefly mention our honeycomb and

√
3 cutting

schemes.

Joint work with: Yijun Xu.
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On Bernstein-type operators preserving derivatives
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As it is well known, Bernstein polynomials were introduced by S. Bernstein in 1912 to provide a constructive
proof of the Weierstrass approximation theorem, establishing that every continuous function defined on [0, 1]
can be uniformly approximated by Bernstein polynomials.

In this work we study Bernstein-type operators that preserves the derivatives in the sense that the operator
applied to the derivative of a function can be expressed as the derivative of the operator applied to the original
function as was studied in [2], related to the operators defined in [1].

Joint work with: David Lara Velasco, Universidad de Granada (Spain).
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Cut Pursuit and Geometric Applications
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We present an overview of the cut pursuit algorithm [1], together with different applications for image
processing and 3D data analysis.

We consider the problem of minimizing functionals defined with respect to an undirected weighted graph
G = (V,E,w) with w ∈ RE

+ and with the following form:

F : ΩV → R : x 7→ f(x) +
∑

{u,v}∈E

w{u,v}h(xu, xv) ,

where f : ΩV → R is a function of interest depending on the context, and h : Ω2 → R is a function that reaches
its minimum only when xu = xv. More precisely, we are interested in functions h that encourage equality
between xu and xv.

Such functionals, commonly encountered when handling spatial data, encourage their solutions to exhibit a
particular kind of graph-structured sparsity. The motivation behind cut pursuit is to exploit this regularity to
accelerate the minimization of F with a working-set iterative scheme.

Thanks to parsimonious computations and efficient parallelization [3], cut pursuit can be several orders
of magnitude faster than other widely used optimization algorithms such as first-order proximal methods, or
graph cut-based approaches. It can be used to minimize a large class of functionals and provides theoretical
convergence guarantees in some settings without requiring convexity or differentiability of f [2].

Its principle can also be adapted to handle a variety of problems with a spatial structure, from inverse brain
imaging to large-scale surface reconstruction [6]. Cut pursuit is also at the center of the SuperPoint Graph
approach [4, 5], a state-of-the-art deep learning-based algorithm for the automated analysis of very large 3D
point clouds.

Joint work with: Löıc Landrieu, IGN LaSTIG, Grand-Est University.
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Figure 1: Mathematical model
for waveguides and electrodes

Our team works on an original concept of Near to Eye Display for
Augmented Reality applications. This device requires mathematical research
to optimize the diffraction phenomenon that forms the images onto the
retina. Diffraction is an optical effect strongly related to periodicity and
very well formulated by mathematics in particular through Fourier Optics.
In order to break the periodicity of our display components we use improved
mathematical models of curves. In this model, a first horizontal curve is
described by a succession of segments with a unique absolute angle. The
other curves are created by the translation of the first curve with a minimal
gap equal to a value fixed by physicals constraints. We define vertical curves
with the same principle. We use the B-Splines functions to approximate
these successions of segments.

In our concept, the horizontals curves represent light waveguides and
verticals curves represent electrodes. Our design is based on the use of Ns

laser sources and Ne electrical switches. Each source addresses a group
of nw random waveguides and each switch a group of ne electrodes both
drawn randomly without replacement in the curves set. When we turn on
a laser source and a switch, the intersection between the corresponding nw and ne curves create an Emissive
Points Ditribution (EPD). Our patented model of curves intend to define the best EPD surface density as
close as possible from a pure random distribution. Our method improves by a factor 3.5 the number of EPD
in comparison to an previous model. For our study, we use an iterative method adapted to B-Splines that
allows for calculating the intersections between verticals and horizontals curves [1]. Figure 1 shows a graphical
representation of the curves, red and blue curves representing activated electrodes and waveguides drawn form
the set of periodic curves, respectively.

Figure 2: CEA-Leti concept of Near to Eye
Display.

Figure 2 shows the concept of NED with a set of holograms,
defined by an EPD, that sends light into the eye. The optical
signal is diffracted through its propagation in the eye following
what we call a self-focusing effect that creates a pixel on the
retina [2]. To mathematically simulate the optical diffraction we
calculate the Fourier Transform (FT) of the EPD. If the EPD
is periodic, the result of the FT is periodic so that the pixel is
repeated periodically on the retina without possibility to form
an image. Conversely, a random EPD breaks the periodicity and
allows isolating a single pixel on the retina. Depending on the
surface density of this random EPD the contrast of this single
pixel is improved. On the contrary, to form an image with a large
number of pixels we need various EPD on the same surface. This
leads to a compromise between randomness, surface density and
surface diversity that represents one of our research target.
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Bézier curves are indispensable for geometric modeling and computer graphics. They have numerous
favourable properties and provide the user with intuitive tools for editing the shape of a parametric poly-
nomial curve, for example, by modifying the control points P0, . . . , Pn. Even more control and flexibility can be
achieved by associating a shape parameter αi with each control point Pi and considering rational Bézier curves,
which comes with the additional advantage of being able to represent all conic sections exactly. In this talk,
we explore the editing possibilities that arise from expressing a rational Bézier curve in barycentric form [1, 2],
defined by a set of triplets (Qi, βi, ti) of interpolation points Qi, weights βi, and nodes ti. In particular, we show
how to convert back and forth between the Bézier and the barycentric form, we discuss the effects of modifying
the constituents (interpolation points, weights, nodes) of the barycentric form (see Fig. 1), and we study the
connection between point insertion in the barycentric form with degree elevation of the Bézier form [3].
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Figure 1: (a) converting a rational Bézier curve to the barycentric form; (b) the effect of moving the interpolation
point Q2; (c) the effect of decreasing the weight β2 by 50%. The dots visualize the curve points P (i/16) for
i = 0, . . . , 16.

Joint work with: Kai Hormann.
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Architects and designers share a long-standing interest in developable surfaces because of their aesthetic
qualities and the advantages in fabrication they offer. This interest stems in part from the restrictions that
the limitation to developable surfaces impose on the design. Digital design tools are required to handle these
restrictions and allow the development of complex designs. While many CAD environments feature tools to
create developable surfaces, existing tools are not adapted to the needs of designers, are inflexible and often
even deliver erroneous or no results.

We address this problem by identifying categorically different design workflows and tasks and addressing
each specifically in a unified design tool integrated into the commonly used CAD system Rhinoceros 3D. We
co-developed interface metaphors and geometric representations best suitable for the specific tasks.

During an early stage of the design process, for example, a user might want to manipulate a surface freely in
an intuitive way, willingly giving up some control over the shape, while later, during a phase of targeted design
development, precise control over the shape in required. We demonstrate that this can be achieved by allowing
the user to gradually add more constraints in the form of reference or guide geometry. Developing the design
starting from a free-form surface by approximation is a very different problem, yet again.

We demonstrate novel solutions to these problems and their application in practice. Our efficient computa-
tional approach allows the optimization to run in the background and maintain a high degree of developability
even while the user is interactively manipulating the surface – all integrated into Rhinoceros 3D.

Joint work with: Victor Ceballos Inza, Johannes Wallner, Helmut Pottmann.
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Space curves play a fundamental role in conveying an object shape. Contours and curvilinear profiles are
significant in manufacturing, art, design and medical applications. For instance, in reverse engineering, 3D
scanning devices are used to digitize and validate a manually optimized physical prototype and it is extremely
important that no details of the scanned object, e.g. sharp edges, corners and in general feature curves, are lost
during the acquisition process. Indeed, when 3D models are acquired by scanning real objects, the resulting
geometry does not explicitly encode these curves, especially when it is affected by noise or missing parts. This
behavior is mainly due to measurement uncertainty, sampling resolution, or occlusion during the acquisition
whereas, in applications like the digitisation of archaeological artefacts, these objects might be damaged, and
then curves are partially missing.

The problem of recognising space curves and providing a mathematical representation of them can be
addressed through the use of the Hough transform technique, which is well known for recognising curves in the
plane and surfaces in space [1], but not yet sufficiently explored for space curves. Such a technique is robust to
noise and outliers and does not suffer from missing parts. In this work, we will present and analyse the Hough
transform (HT) to recognise and approximate space curves in 3D digital models (see [2]), a problem that is
not currently addressed by the standard HT. In our approach, we take advantage of a recent HT formulation
for algebraic curves to define both parametric and implicit curve representations. Specifically, we extend a first
approach that applies directly the HT to the recognition of curves in space in parametric form, but it is limited
to the case where the number of parameters is equal to the number of equations [3]. Regarding the implicit
representation, we implement and follow the strategy defined in [4] that exploits the evaluation of the implicit
functions and compares them with two theoretical bounds. To apply the HT to space curves, we assume that:
i) the family of curves in which to search for the solution holds a regular parameterization for curves expressed
in a parametric form; ii) the equations that define these curves are analytical for curves in implicit form.

The limited availability of templates for space curves has probably reduced the interest to the space curve
fitting problem. To overcome this issue, we extend the existing dictionary of space curves by defining two types
of families: we call type I curves the families of space curves equipped with an explicit representation, whereas
we label type II curves the families obtained as the intersection of a quadric surface and a cylinder having a
plane curve as its directrix, exploiting the large variety of plane curves available [5].

Joint work with: Silvia Biasotti, Bianca Falcidieno.
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ABSTRACT: We provide a full space quadratic external field extension of a classical result of Marcel Riesz
for the equilibrium measure on a ball with respect to Riesz s-kernels. We address the case s = d−3 for arbitrary
dimension d, in particular the logarithmic kernel in dimension 3. The equilibrium measure for this full space
external field problem turns out to be a radial arcsine distribution supported on a ball with a special radius.
As a corollary, we obtain new integral identities involving special functions such as elliptic integrals and more
generally hypergeometric functions. It seems that these identities are not found in the existing tables for series
and integrals, and are not recognized by advanced mathematical software. Among other ingredients, our proofs
involve the Euler – Lagrange variational characterization, the Funk – Hecke formula, the Weyl regularity lemma,
the maximum principle, and special properties of hypergeometric functions.

Joint work with Djalil Chafai, Robert Womersley.
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with intuitive interior control
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The representation of multi-sided (non-quadrilateral) surfaces is an interesting and difficult problem of
computer-aided geometric design. The de facto standard solution in commercial systems is trimming, where
the patch is defined by clipping the domain of a larger four-sided surface. This approach has several drawbacks.
The larger surface is often underdetermined, and the connection to adjacent patches is generally not even
exactly C0-continuous. Another popular choice is to subdivide the multi-sided region into quadrilaterals, but
determining the subdivision curves is a delicate matter, and this method may also harm internal continuity.

There is a line of research promoting the use of non-standard representations that ensure smooth connections
to adjacent patches. This comes basically in two flavors:

• Transfinite surface interpolation. The surfaces are more-or-less completely defined by the boundary con-
straints, which are given in a very general form. Some types of interior control, such as snapping to
auxiliary objects or a base surface, were attempted before (see e.g. [4, 1]), but these are not really suitable
for an interactive design process.

• Control-point–based approaches. Representations such as the generalized Bézier patch [3], in addition
to adhering to the boundary constraints, also offer a very intuitive control of the interior, but they are
usually restricted to having (rational) polynomial boundaries. The recent generalized B-spline patch [2]
is an exception, but it lacks the connected control network of its predecessor.

In this work I have attempted to combine these two worlds. The result—unlike [1]—is not CAD-exportable,
and—unlike [2]—it cannot handle the multiply connected and/or concave, extreme configurations. What it
does offer, on the other hand, is accurate interpolation of arbitrary boundaries as well as a natural control of
the surface interior, suitable for interactive editing or approximation, while retaining the ability to smoothly
connect to adjacent patches.
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Most methods to construct curves rely on the interpolation of discrete data, such as points, tangents or
curvatures. If, in addition, we want to prescribe the total length of the resulting curve, in general we need to use
iterative approximate methods. Pythagorean–hodograph (PH) curves are polynomial curves with the distinctive
property of possessing arc lengths exactly determined by simple algebraic expressions in their coefficients. Hence
the problem of constructingG2 curves, that interpolate points, tangent directions and curvatures, and in addition
have prescribed arc-length, can be exactly addressed. In this talk both the planar and the spatial problems are
investigated considering PH curves of degree 7. For planar curves it is shown that in order to have a solution
for any data, it is convenient to consider biarcs, keeping the degree to 7. In this case the solution of the G2

continuity equations can be derived in a closed form, depending on four free parameters. By fixing two of them
to zero, it is proven that the length constraint can be satisfied for any data. The proposed method is easy to
implement and simple to use in practice, moreover, it can be directly applied to a (local) construction of G2

continuous interpolating splines. Its extension to the spatial case is also possible and the main ideas behind
this construction will be presented.

Joint work with: Marjeta Knez (University of Ljubljana) and Francesca Pelosi (University of Roma Tor
Vergata).
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Abstract: The training of deep residual neural networks (ResNets) with backpropagation has a memory
cost that increases linearly with respect to the depth of the network. A way to circumvent this issue is to use
reversible architectures. We propose to change the forward rule of a ResNet by adding a momentum term. The
resulting networks, momentum residual neural networks (Momentum ResNets), are invertible. Unlike previous
invertible architectures, they can be used as a drop-in replacement for any existing ResNet block. We show that
Momentum ResNets can be interpreted in the infinitesimal step size regime as second-order ordinary differential
equations (ODEs) and exactly characterize how adding momentum progressively increases the representation
capabilities of Momentum ResNets. Our analysis reveals that Momentum ResNets can learn any linear mapping
up to a multiplicative factor, while ResNets cannot. In a learning to optimize setting, where convergence to a
fixed point is required, we show theoretically and empirically that our method succeeds while existing invertible
architectures fail. We show on CIFAR and ImageNet that Momentum ResNets have the same accuracy as
ResNets, while having a much smaller memory footprint, and show that pre-trained Momentum ResNets are
promising for fine-tuning models.

Joint work with: Pierre Ablin, Mathieu Blondel and Gabriel Peyré [1].
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Figure 1: Separation of four nested rings using a ResNet (upper row) and a Momentum ResNet (lower
row). From left to right, each figure represents the point clouds transformed at layer 3k. The ResNet fails
whereas the Momentum ResNet succeeds.
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Figure 2: Memory used (using a profiler) for a Transformer and a Momentum Transformer on one training
epoch, as a function of the batch size (left) and sequence size (right).
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Abstract: In this talk I will present results (from papers in collaboration) about the construction of C1

isogeometric quadrilateral elements that could be seen as extensions of the the classical Argyris triangular
element. The structure is different (triangular and quadrilateral elements are structurally different) but the
d.o.f.s and space contraints have some similarities. When the quadrilateral is a spline patch, the optimal order
of approximation requires some constraints of the parametrization that needs to be “analysis-suitable G1”. An
alternative is to enforce the C1 interelement continuity in a weak sense, e.g. by the mortar method.

Joint work with: Mario Kapl, Gabriele Loli, Thomas Takacs
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In this talk, we will discuss a phase-field model to partition a curved surface into path-connected segments
with minimal boundary length as introduced in [1]. Phase-fields offer a powerful tool to represent diffuse
interfaces with controlled width and to optimize them in a variational framework. We demonstrate how the
multiplicative combination of phase-field functions can be used to effectively compute a hierarchical partition of
unity. This induces an associated hierarchy of atlases, whose charts naturally overlap and thus are well-suited for
applications such as texture mapping. To ensure connectedness of the charts, we employ a constraint introduced
for phase-fields in [3]. Furthermore, we obtain distortion minimizing segmentations via a PDE-constrained
optimization approach where the phase-field model allows direct use of Lagrangian calculus. Following [2], the
Yamabe equation, which allows computing the distortion induced by segment flattening, is considered as the
constraint. This way, we obtain end-to-end diffuse formulations of variational problems in surface segmentation
that are straightforward to treat computationally. Various examples will illustrate the flexibility and robustness
of this approach.

Figure 1: Our phase-field approach produces segments with diffuse interfaces, shown as red to blue colormap,
by solving a variational problem. From this, we produce charts, shown are their images in the plane, and use
them to map textures to the surface. However, the charts exhibit high distortion when only using the perimeter
as objective (left). Thus, we minimize the distortion using the Yamabe equation as PDE-constraint (right).

Joint work with: Janos Meny (Bonn), and Martin Rumpf (Bonn)
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Modern industrial computed tomography can generate volume data of the size of 1TB and larger and many
of the scanned objects are unique, for example cars in reverse engineering or cultural heritage. To handle such
“bigtures” on normal hardware, compression is unavoidable and methods have to be carefully designed that
work on the sparse compressed data only. Once wavelet compression is the tool of choice, this means that we
can only use the wavelet coefficients while access to the full decompressed image is out of question. This affects
all stages of the process, from vizualization and standard image manipulations up to segmentation.

The talk presents some application examples and the mathematical background especially for efficient real
time denoising based on an approximation of the TV norm from wavelet coefficients and a semi-automatic
segmentation process based on feature learning.

Joint work with: Benedikt Diederichs, Thomas Lang, Andreas Michael Stock
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The compressive learning framework reduces the computational cost of training on large-scale datasets. In a
sketching phase, a dataset X = {xi}ni=1 ⊂ Rd with n samples is first compressed to a lightweight, m-dimensional
sketch vector zΨ,X , obtained by mapping the data samples through a well-chosen feature map Ψ, and averaging
those contributions (see Fig. 1). In a learning phase, the desired model parameters are then extracted from
this sketch by solving an optimization problem, which also involves a feature map Φ. When the feature map is
identical during the sketching and learning phases (Ψ = Φ), formal statistical guarantees (excess risk bounds)
have been proven [1, 2].

However, the desirable properties of the feature map are different during sketching and learning (such as
quantized outputs, and differentiability, respectively). We thus study the relaxation where this map is allowed to
be different for each phase (Ψ 6= Φ). First, we prove that the existing guarantees carry over to this asymmetric
scheme, up to a controlled error term, provided some Limited Projected Distortion (LPD) property holds. We
then instantiate this framework to the setting of quantized sketches, by proving that the LPD indeed holds for
binary sketch contributions. Finally, we further validate the approach with numerical simulations, including a
large-scale application in audio event classification.
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Figure 1: Our Asymmetric Compressive Learning (ACL) scheme: a dataset X of n examples xi (sampled i.i.d. from
P0) is first compressed as a lightweight vector—the sketch—by averaging data features Ψ(xi). This operation can be
performed in parallel by a sensor network, which benefits greatly from hardware-friendliness and quantization. A model
θ̂′ is then learned from the sketch zΨ,X by solving a CL optimization procedure (minimizing a task-specific cost function
CΦ between the sketch and the model) that uses a different, differentiable map Φ 6= Ψ. Our goal is to prove statistical

learning guarantees (w.r.t. P0) for the model θ̂′.
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The Kolmogorov-Arnold representation theorem

revisited

Johannes Schmidt-Hieber
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There is a longstanding debate whether the Kolmogorov-Arnold representation theorem can explain the
use of more than one hidden layer in neural networks. The Kolmogorov-Arnold representation decomposes a
multivariate function into an interior and an outer function and therefore has indeed a similar structure as a
neural network with two hidden layers. But there are distinctive differences. One of the main obstacles is that the
outer function depends on the represented function and can be wildly varying even if the represented function is
smooth. We derive modifications of the Kolmogorov- Arnold representation that transfer smoothness properties
of the represented function to the outer function and can be well approximated by ReLU networks. It appears
that instead of two hidden layers, a more natural interpretation of the Kolmogorov-Arnold representation is
that of a deep neural network where most of the layers are required to approximate the interior function.
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On Gabor phase retrieval from samples

Rima Aliafari
ETH Zurich
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We study the problem of recovering signals from magnitudes of their short-time Fourier transform. We ask
whether it is possible to recover a signal uniquely from samples of its Gabor transform magnitude and analyze
the connection of this problem to stability of Gabor phase retrieval from full (unsampled) measurements.
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The Linearized Hellinger-Kantorovich Distance

Bernhard Schmitzer
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Optimal transport provides a geometrically intuitive Lagrangian way of comparing distributions by mass
rearrangement. The metric can be approximated by representing each sample as deformation of a reference
distribution. Formally this corresponds to a local linearization of the underlying Riemannian structure. When
combined with subsequent data analysis and machine learning methods this new embedding usually outperforms
the standard Eulerian representation. We show how the framework can be extended to the unbalanced Hellinger–
Kantorovich distance to improve robustness to noise and mass fluctuations.

Joint work with: Tianji Cai, Junyi Cheng, Matthew Thorpe
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Repulsive Curves and Surfaces
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Functionals that penalize bending or stretching of a surface play a key role in geometric and scientific
computing, but to date have ignored a very basic requirement: in many situations, surfaces must not pass
through themselves or each other. This paper develops a numerical framework for optimization of surface
geometry while avoiding (self-)collision. The starting point is the tangent-point energy, which effectively pushes
apart pairs of points that are close in space but distant along the surface. We develop a discretization of
this energy for triangle meshes, and introduce a novel acceleration scheme based on a fractional Sobolev inner
product. In contrast to similar schemes developed for curves (cf. [2]), we avoid the complexity of building a
multiresolution mesh hierarchy by decomposing our preconditioner into two ordinary Poisson equations, plus
forward application of a fractional differential operator. We further accelerate this scheme via hierarchical
approximation, and describe how to incorporate a variety of constraints (on area, volume, etc.). Finally, we
explore how this machinery might be applied to problems in mathematical visualization, geometric modeling,
and geometry processing.

Joint work with: Chris Yu, Caleb Brakensiek, Keenan Crane
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Deep Network Multi-Spline Approximation Method

Sefti Rania
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This paper introduces a new approximation method called Deep Multi Spline (DM-Spline) which is based on
a deep learning model and various types of spline functions (B-Spline, UAT-Spline, hyperbolic-Spline, ...). The
main idea is to combine different spline functions into a learning model that controls their contribution to the
accurate approximation of the function to be built. We introduce a new bridge between Deep Neural Networks
(DNNs) and spline approximation methods by developing a detailed theory in each layer and presenting some
results on this subject. To test the robustness of the proposed approach, a comparison to state-of-the-art is
achieved and shows the efficiency of our model. An application in the medical field is also provided.

Joint work with: Sbibih Driss, Jennane Rachid.
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The Unbalanced Gromov-Wasserstein distance

Thibault Séjourné
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Optimal transport is an increasingly popular tool to compare distributions or compute assignments for ma-
chine learning and statistical inference. It takes advantage of the data’s geometry, but suffers three limitations:
(i) It is expensive to compute; (ii) it only compares probabilities; (iii) the distributions must be defined on
the same space. Those restrictions are problematic to scale in applications, to discard geometric outliers, or
to compare graphs with different structures. To alleviate each difficulty, it has been proposed to use entropic
regularization [1], unbalanced optimal transport (UOT) [2] and the Gromov-Wasserstein distance (GW) [3].
The goal of this presentation is to combine the above three ideas to define a new formulation called unbalanced
Gromov-Wasserstein (UGW) [4].

I first introduce the UOT formulation, and its entropically regularized version. I detail the Sinkhorn algo-
rithm which solves the UOT problem on GPUs with a linear convergence. I then introduce the GW distance
which is a non-convex quadratic assignment problem. It compares spaces equipped with a metric and a dis-
tribution, such as a graph with its geodesic distance and positive weights on nodes. I present two unbalanced
extensions of this GW formulation. I show that the first one is a distance. The second one is computable
on GPUs using entropic regularization by solving a sequence of regularized UOT problems. I end with ML
experiments highlighting the applicability of UGW. If time permits, I will detail a new variant of Sinkhorn
algorithm which accelerates the approximation of UOT and UGW [5].

Joint work with: François-Xavier Vialard, Gabriel Peyré.

GitHub Implementation: thibsej/unbalanced gromov wasserstein
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Distance related problems in planar graphs

and graphs on surfaces

Sergio Cabello
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Let G be graph and let dG(u, v) denote the distance between vertices u and v of G. Three key values
associated to the graph are

• the Wiener index, defined by
∑

u,v∈V (G) dG(u, v) and closely related to the average distance of G;

• the sum of inverse geodesic lengths, defined as
∑

u ̸=v∈V (G)
1

dG(u,v) and closely related to the total efficiency

of G;

• the diameter, defined by max{dG(u, v) | u, v ∈ V (G)}.

All these values can be computed trivially by explicitly computing all the pairwise distances in G. Can we
compute these values faster, without computing all the pairwise distances? Lower bounds assuming the Strong
Exponential Time Hypothesis (SETH) were shown by Roditty and Vassilevska Williams [3]. Most interestingly,
if the graph has n vertices and Θ(n) edges, no algorithm can compute those values in O(n1.99999), assuming
SETH.

I will discuss how these values can be computed in subquadratic, namely Õ(n9/5) time, for n-vertex planar
graphs and graphs on surfaces of constant genus. The main ideas are from [1, 2], but I will explain an alternative
point of view that represents all distances in the graph a compact way.
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Interpolation of 3D data streams

with C2 PH quintic splines

Alessandra Sestini
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Algorithms for real–time interpolation of data streams are very useful for trajectory planning where, as a
new target position (and possibly an associated direction of motion) becomes available, a suitable interpolating
path has to be accordingly successively extended. In such context the flexibility of splines is clearly very useful,
see [1] for their application to planar data stream interpolation. In this talk we will show how spatial PH quintic
biarc splines can be effectively adopted in order to define a globally C2 spatial path interpolating a stream of 3D
Hermite data. The local interpolation scheme has three free parameters which can highly influence the shape of
the local interpolating path, as usual with PH curves [2]. In order to facilitate the real-time usage of the method,
such parameters are selected with analytic formulas which ensure fourth approximation order to the scheme [3].
The flexibility of the method is also extended adapting it also to the case where only streams of positions are
given. Extensions of this research of interest for real-time rigid body motions are under development and will
be possibly also briefly introduced.

Joint work with: Carlotta Giannelli, Lorenzo Sacco.
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Multiscaling manifold-valued data via approximation

subdivision schemes
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The close connection between subdivision schemes and wavelets has been studied for decades. One mile-
stone is Donoho’s work from the nineties about the direct application of interpolatory subdivision operators
as upscaling operators in a pyramid transform [1]. However, it has been established only recently how to use
non-interpolatory operators similarly [2].

In this talk, I will briefly survey this hierarchical analysis and introduce the lifting of multiscale pyramid
transform for analyzing manifold-valued functions. Then, we describe this construction in detail and present its
analytical properties, including stability and coefficient decay. Finally, we numerically demonstrate the results
and show the application of our method for denoising and abnormalities detection.

Joint work with: Wael Mattar.
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Nonsmooth Implicit Differentation for Machine Learning
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Introduction Many problems in machine learning can be solved efficiently by taking advantage of implicit differentia-
tion, from hyperparameter tuning [1] to training neural networks with implicitly defined layers [3, 2]. The key ingredient
to applying implicit differentiation is the implicit function theorem which guarantees the existence of an implicit function
and its differentiability, with a calculus for the implicit gradient. A bottleneck for extending such methods in practice is the
lack of smoothness present in many machine learning problems. Although there is a rich literature on nonsmooth implicit
function theorems already, the focus has primarily been on proving the existence and regularity of implicit functions rather
than on developing a practical calculus.

Main Result We construct a theory of implicit differentiation for path differentiable functions [4] with a flexible calculus
that allows one to compute implicit gradients using the analogous formulas from the smooth setting, in a way that is
compatible with backpropagation and algorithmic differentiation. Path differentiable functions were studied in [4] as
a subset of locally Lipschitz functions which admit a conservative Jacobian, denoted JF for a function F . Our main
contribution is the following theorem.
Theorem. Let F : Rn × Rm → Rm be path differentiable and (x̂, ŷ) ∈ Rn × Rm be such that F (x̂, ŷ) = 0. Assume
JF (x̂, ŷ) is convex and ∀[AB] ∈ JF (x̂, ŷ),B is invertible. Then ∃U ⊂ Rn a neighborhood of x̂ and a path differentiable
function G such that

∀x ∈ U F (x,G(x)) = 0.

A conservative Jacobian of G can be computed from the formula

JG (x) =
{
−B−1A : [A B] ∈ DF (x,G(x))

}
.

Applications With the previous theorem and the framework of conservative Jacobians, we are able to prove almost sure
convergence guarantees for training neural networks with implicitly defined layers. These are networks with layer outputs
defined as fixed points to an equation [2] or solutions to an optimization problem [3].

We also examine hyperparameter tuning for the LASSO. The problem of choosing the best weight λ for the LASSO
problem can be formulated as a bilevel optimization problem:

min
λ∈R

C(β̂(λ)) such that β̂(λ) ∈ argmin
β∈Rp

1

2
∥Xβ − y∥22 + λ ∥β∥1

where C is some measure of task performance, e.g. the cross validation loss, the holdout loss, the stein unbiased risk
estimate, etc. By writing the optimality condition as a fixed point equation, we can apply our theorem to compute a
conservative Jacobian for the solution β̂(λ).

Joint work with: Jérôme Bolte, Tam Le, and Edouard Pauwels.
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Polynomiality vs. rationality

of Pythagorean hodograph/normal curves and surfaces

Zbyněk Š́ır
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We will discuss the relation between the polynomial and rational curves with pythagorean hodograph in R2

and R3 as well as the rational and polynomial pythagorean normal surfaces in R3.
The planar cases are considered rather for the seek of completeness and as a motivation. Indeed the relation

between the planar polynomial and rational PH curves was already fully analyzed in [3]. We will however
compare these two families of curves using a different method based on solving a system of linear equations.

The situation is much more interesting in R3. Historically the polynomial PH curves [1] are much better
studied then the rational ones, [4, 8]. On the other hand the rational PN surfaces were fully described already
in [2] but only examples of polynomial PN surfaces are available, see e.g. [5, 6]

We propose a new method for studying these problems. It is based on determining the corresponding
motion polynomial, [7, 9]. While the primal (rotation) component of the motion polynomial is arbitrary, the
dual (translation) part is determined be a linear system of equations. This system is analysed and possible
denominators of the resulting PH/PN curves and surfaces are discussed. Polynomial object in this approach
appear as special cases of the polynomial ones. From a certain point of view however the polynomial objects
appear to be the generic cases.

Joint work with: Hans-Peter Schröcker, Daniel Scharler, Bahar Kalkan.
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Optimal recovery of operator sequences
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We consider two recovery problems based on information given with an error. First is the problem of optimal
recovery of the class WT

q = {(t1h1, t2h2, . . .) ∈ `q : ‖h‖q ≤ 1}, where 1 ≤ q < ∞ and t1 ≥ t2 ≥ . . . ≥ 0, in
the space `q when in the capacity of inexact information we know either the first n ∈ N elements of a sequence
with an error measured in the space of finite sequences `nr , 0 < r ≤ ∞, or a sequence itself is known with an
error measured in the space `r. The second is the problem of optimal recovery of scalar products acting on
Cartesian product WT,S

p,q of classes WT
p and WS

q , where 1 < p, q < ∞, 1
p + 1

q = 1 and s1 ≥ s2 ≥ . . . ≥ 0, when
in the capacity of inexact information we know the first n coordinate-wise products x1y1, x2y2, . . . , xnym of the
element x× y ∈WT,S

p,q with an error measured in the space `nr . We find exact solutions to above problems and
construct optimal methods of recovery. As an application of our results we consider the problem of optimal
recovery of classes in Hilbert spaces by Fourier coefficients known with an error measured in the space `p with
p > 2, which is close to the ill-posed problems considered in [1].

Joint work with: Vladislav Babenko, Nataliia Parfinovych.
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Direct (and inverse) modeling of inflatables and other

wrinkled thin shells
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Inflatables are structures made of flat planar membranes that are sealed or sewn to each other and that
assume complex curved shapes once pressurized. Wrinkles tend to form at the locations of the seams, which
makes the numerical simulation and, a fortiori, the inverse design, of such structures very challenging: not only
does one need to finely discretize the mesh in order to accurately reproduce the geometry of these wrinkles, but
one also has to deal with the numerical instabilities that arise in the system.

In this presentation, I will show that relying on tension field theory to convexity the constitutive material
law of the membrane material allows us to correctly predict the global shape of the structure, even when we
use coarsely discretized meshes. We can then use this convexified model in an interactive design tool that
automatically adjusts the shape of the panels of the inflatable so as to create a structure of a desired shape [1].

In addition, we will see that we can subsequently recover the geometry of the missing wrinkles by parametriz-
ing them by an amplitude and phase field that we solve for over the coarse base mesh. This approach allows us
to recover complex wrinkle patterns with wavelength much smaller than the resolution of the base mesh while
requiring much fewer degrees of freedom than required by traditional shell solvers [2].
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In different application fields related to geometric modeling and data processing, it is common to deal with
corrupted data, due to the nature of their generation or collection process. As concerns spline fitting schemes, a
necessary preprocessing step, which highly affects the shape and accuracy of the (re-)constructed model, consists
in computing the parametric values associated with each input data. We propose a data-driven learning method
based on a neural network which takes in input the relative distances of a variable number of data points and
returns a suitable parameterization of randomly measured points. Different spline fitting approximation schemes
will be considered both for the network design and for the numerical experiments on synthetic and real data
configurations.

Joint work with: Carlotta Giannelli, Angelos Mantzaflaris.

196



Edge adaptive methods and machine learning for

high-resolution image reconstruction

Somacal Agust́ın
Laboratoire Jacques-Louis Lions, Sorbonne Université
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Edge-adapted methods have been introduced in the context of image processing [1, 2] to reconstruct high-
resolution images from coarser cell averages. In particular, when images consist of piece-wise smooth functions,
the interfaces can be approximated by a pre-specified functional class (lines, circle arcs, etc) through optimiza-
tion (LVIRA [2]) or specific preprocessing (ENO-EA [1]). In this work, we extend the ENO-EA approach to
polynomials of degree higher than 1 and compare this algebraic approach to that introduced in [2] as well as
to learning-based methods [3] in which an artificial neural network (NN) (or in principle any other non linear
sufficiently rich function family) is used to attain the same goal.

Joint work with: Cohen Albert, Dolbeault Matthieu, Mula Olga.
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Spectral analysis can be used to study the error in each eigenvalue and eigenfunction of a numerical discretiza-
tion of an eigenvalue problem. For a large class of boundary and initial-value problems the total discretization
error on a given mesh can be recovered from its spectral error. This is of primary interest in engineering
applications.

The isogeometric approach for eigenvalue problems has been widely investigated in the literature; see, e.g.,
[1, 3, 4]. Maximally smooth spline spaces on uniform grids are an excellent choice for addressing eigenvalue
problems. Yet, they still present a flaw: a very small portion of the eigenvalues are poorly approximated and the
corresponding computed values are much larger than the exact ones. These spurious values are usually referred
to as outliers. The number of outliers increases with the degree p. However, for fixed p, it is independent of
the degrees of freedom for univariate problems, while a “thin layer” of outliers is observed in the multivariate
setting.

Outlier-free discretizations are appealing, not only for their superior description of the spectrum of the
continuous operator, but also for their beneficial effects in various contexts, such as an efficient selection of
time-steps in (explicit) dynamics and robust treatment of wave propagation. For a fixed degree, the challenge
is to remove outliers without loss of accuracy in the approximation of all eigenfunctions.

In this talk we discuss isogeometric Galerkin discretizations of eigenvalue problems related to the Laplace
operator subject to any standard type of homogeneous boundary conditions conditions in certain optimal spline
subspaces [5]. Roughly speaking, these optimal subspaces are obtained from the full spline space defined on
specific uniform knot sequences by imposing specific additional boundary conditions. The spline subspaces of
interest have been introduced in the literature some years ago when proving their optimality with respect to
Kolmogorov n-widths [2]. For a fixed number of degrees of freedom, all the eigenfunctions and the corresponding
eigenvalues are well approximated, without loss of accuracy in the whole spectrum when compared to the full
spline space. Moreover, there are no spurious values in the approximated spectrum. In other words, the
considered subspaces provide accurate outlier-free discretizations in the univariate and in the multivariate
tensor-product case. The role of such spaces as accurate discretization spaces for addressing general problems
is discussed as well.

Joint work with: Carla Manni, Espen Sande.
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Multistep Methods Do Not Accelerate
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The Frank-Wolfe algorithm has regained much interest in its use in structurally constrained machine learning
applications. However, one major limitation of the Frank-Wolfe algorithm is the slow local convergence property
due to the zig-zagging behavior. We observe that this zig-zagging phenomenon can be viewed as an artifact
of discretization, as when the method is viewed as an Euler discretization of a continuous time flow, that flow
does not zig-zag. For this reason, we propose multistep Frank-Wolfe variants based on discretizations of the
same flow whose truncation errors decay as O(∆p), where p is the method’s order. This strategy “stabilizes”
the method, and allows tools like line search and momentum to have more benefit. However, in terms of a
convergence rate, our result is ultimately negative, suggesting that no Runge-Kutta-type discretization scheme
can achieve a better convergence rate than the vanilla Frank-Wolfe method. We believe that this analysis adds
to the growing knowledge of flow analysis for optimization methods, and is a cautionary tale on the ultimate
usefulness of multistep methods.

Joint work with: Zhaoyue Chen, Mokhwa Lee.
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Figure 1: Our approach for generating accurate G-code for AM

We put forward a streamlined AM workflow, with a seamless transfer from the initial CAD description
to the final G-code. Polygonal approximations and associated errors are avoided by adhering to the NURBS
standard at all steps. Experimental results confirm a considerable improvement in quality over the traditional
AM workflow, consisting of an initial polygonization of the object (e.g., via STL), slicing this approximation,
offsetting the polygonal sections, and finally generating G-code made up of polyline trajectories (G1 commands).
This traditional AM workflow does not meet the requirements for truly functional parts regarding quality and
precision, especially in large-scale 3D printing, hence wasting the possibilities of existing AM hardware.

Our proposal (Fig. 1) bypasses the polygonal approximation and then proceeds as follows:

(1) Direct slicing of the CAD model in the NURBS environment provided by a NURBS-based CAD system.
(2) Path planning, including offset trajectories, in this NURBS environment.
(3) Accurate G-code generation of NURBS: circular arcs (G2/3 code), Bézier cubics (G5), and polylines (G1).

Slicing (1) and offsetting, the most complex geometry operation in path planning (2), are already available in
any CAD system in a reliable way. Therefore, there is no need to develop ad-hoc procedures, as we can access
these capabilities through a suitable programming environment. In particular, we employ a NURBS-based
commercial CAD system (Rhino3D along with its programming environment Grasshopper) for direct slicing of
the model, offset generation, and trimming.

Our main contribution is sticking to the NURBS standard at the last step (3) of AM, namely G-code
generation, a possibility overlooked in both the literature and commercial applications. To this aim, we exploit
the possibilities of exiting firmware controlling 3D printers, such as Marlin, incorporating G2/3 (circular arcs)
and G5 (cubic Bézier curves) commands. Since trajectories resulting from offsetting in Rhino3D usually restrict
to circles and polynomial (cubic or quadratic) splines, the exact conversion into G2/3 and G5 code is readily
performed via standard NURBS geometry processing, such as knot-insertion and degree-elevation.

Research supported by grant PID2019-104586RB-I00, funded by MCIN/AEI/10.13039/501100011033.

Joint work with: Jesús M. Chacón, Javier Vallejo, Pedro J. Núñez.
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A polynomial Pythagorean-hodograph (PH) curve has the property that its parametric speed — i.e., the
derivative of the arc length with respect to the curve parameter — is a polynomial rather than the square
root of a polynomial. Many computational advantages derive from this property and are useful in offsets, path
planning, geometric design and similar applications.

In this talk, a geometric characterization for planar polynomial PH curves is presented. It is based on a
variant of the dual representation of planar curves, where a curve may be regarded as the envelope of its tangent
lines. The approach used here is illustrated with many examples.

A comparison is made with the state-of-art method : three–stage procedure that transforms any differentiable
plane curve r(t) into a PH curve r̂(t) through the use of the conformal map z → z2. In this framework, the
Pythagorean structure of the hodograph r̂′(t) is achieved through the complex variable model. The a priori
implementation is done through an algebraic model.

In the technique presented here, the Pythagorean property of the hodograph is achieved by a suitable
geometric model. Notorious results for cubic PH curves and quintic PH curves are generalized. This geometric
characterization provides an alternative three–stage procedure of generating plane polynomial PH curves. This
work contributes to a different explanation of the theory and the applied algorithms for planar PH curves. It
can be developed in various other related topics.
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Isogeometric Analysis generalizes classical finite element analysis and intends to integrate it with the field
of Computer-Aided Design. A central problem in achieving this objective is the reconstruction of analysis-
suitable models from Computer-Aided Design models, which is in general a non-trivial and time-consuming task.
This talk will present new spline constructions [1, 2] that enable model reconstruction, as well as simulation
of high-order PDEs on the reconstructed models. The proposed almost-C1 splines [2] are finite piecewise-
biquadratic splines on fully unstructured quadrilateral meshes (i.e., without restrictions on placements or number
of extraordinary vertices). This is the lowest-degree unstructured spline construction that can be used to solve
fourth-order problems on surfaces of arbitrary topology.

The definition of almost-C1 splines builds upon the one from [1], and leads to splines that are C1 smooth
almost everywhere – that is, at all vertices and across most edges, and in addition almost (i.e. approximately)
C1 smooth across all other edges. Moreover, the proposed refinement scheme yields a C1 smooth limit surface.
The spline basis described has no parametric singularities, has several B-spline-like properties (e.g., partition of
unity, non-negativity, local support), and can be implemented using Bézier-extraction. Numerical tests suggest
that the basis is well-conditioned and exhibits optimal approximation behaviour.

Figure 1: Example of an analysis-suitable model of a Dodge Neon reconstructed using almost-C1 splines. The
left figure shows the spline surface, the underlying Bézier mesh is shown on the right.

Joint work with: Thomas Takacs (Johann Radon Institute for Computational and Applied Mathematics)
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Many research and industry codes tend to generate large amounts of intermediate data, for instance under
the form of tabulated values of physical quantities. This data can be quite redundant (i.e of small effective
dimension), justifying the use of lossy compression methods such as Singular Values Decomposition (SVD)
for storing and accessing it more efficiently. But said redundancy could also be exploited in other ways, for
instance by extrapolating it with some surrogate model to reduce unnecessary calculation on close configurations.

This is the lead we are following in this article, by introducing a new compression tool based on the Em-
pirical Interpolation Method, an algorithm initially developed in the framework of partial differential equations
[2]. Unlike SVD, this EIM-compression method is based on the infinite norm ‖ · ‖∞, and proceeds in a greedy
way by iteratively trying to approximate the data and incorporating the chunks of information which cause the
largest error. In the process, it provides a vector basis and a set of interpolation points, which can be used
to approximate future data from very little information. The algorithm is competitive in terms of speed and
accuracy, but also very suitable for parallelization and out-of-core computation (processing of data too large for
the computer RAM).

We apply this algorithm to a neutronics problem: the computation of homogenized cross-sections. These
quantities, which measure the interaction of neutrons with matter, are generated in large amounts (up to hundred
of gigabytes) by nuclear reactor simulators, stored as tabulated multivariate functions, and have already been
shown to be highly redundant [1]. The already mentionned EIM basis and interpolation points enable us to
build an elementary surrogate model for these cross-sections: they make it possible to reconstruct a full grid of
any of them using only its values at a small number of points. By training this model on a well-chosen subset
of the data, we can greatly speed up the calculation by interpolating most of the sections instead of computing
them explicitly. We assess the performance of this method on realistic nuclear data, and discuss the impact of
several modeling choices - especially normalization, which is of great importance in the problem at hand.

Joint work with: Karim AMMAR, Bertrand BOURIQUET, Nicolas GERARD-CASTAING.
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In this talk we study discretization spaces over multi-patch domains, which can be used for isogeometric anal-
ysis of fourth order partial differential equations (PDEs). While standard Galerkin discretization of fourth order
PDE problems require C1-smooth discretizations, we propose a method that uses approximate C1-smoothness,
cf. [2, 4].

A key property of IGA is that it is simple to achieve high order smoothness within a single tensor-product
B-spline (or NURBS) patch. However, to increase the geometric flexibility, one has to construct spaces be-
yond such a tensor-product structure. This can be done using unstructured splines, e.g., as in [3], or using
a multi-patch construction. While C0-matching multi-patch domains are easy to construct, C1-smoothness is
harder to achieve. It was shown in [1], that C1-smooth isogeometric discretizations over G1-smooth multi-patch
domains do in general not possess sufficient approximation power. This issue was circumvented in [1] by restrict-
ing to a smaller class of G1-smooth multi-patch parametrizations, so called analysis-suitable G1 multi-patch
parametrizations, which yield C1-smooth isogeometric spaces. However, to avoid this additional restriction,
we relax the smoothness constraints and construct isogeometric spaces that yield optimal convergence rates in
numerical experiments while being only approximately C1.

Such constructions are of interest when solving numerically fourth-order problems, such as the biharmonic
equation or Kirchhoff-Love plate and shell formulations. The approximate C1 method is advantageous when
compared to alternatives that rely on a weak imposition of smoothness, such as Nitsche’s method. In contrast
to weakly imposing coupling conditions, the approximate C1 construction is explicit and no additional terms
need to be introduced to penalize the jump of the derivative at the interface. Thus, the approximate C1 method
can be used more easily as no additional parameters need to be estimated.

Joint work with: Pascal Weinmüller.
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Parametric operator equations have gained significant attention in recent years. In particular, partial dif-
ferential equations with random coefficients play an important role in the study of uncertainty quantification.
Therefore, the numerical solution of these equations and how to compute them in an efficient and reliable way
has become more and more important. The usual example is the following model problem, describing the
diffusion characteristics of inhomogeneous materials and therefore being called diffusion equation:

Let the domains D ⊆ Rdx , typically with dx = 1, 2 or 3, and Dy ⊆ Rd as well as the random coefficient
a : D ×Dy → R and the right-hand side f : D → R be given. Then, find u : D ×Dy → R, such that for all
y ∈ Dy there holds

−∇ · (a(x,y)∇u(x,y)) = f(x) x ∈ D, y ∈ Dy

u(x,y) = 0 x ∈ ∂D, y ∈ Dy.

The differential operator ∇ is always used w.r.t. the spatial variable x. The one-dimensional components of y
are assumed to be i.i.d. with a prescribed distribution and the dimension d of the random vector y is typically
very large.

We present an efficient, non-intrusive algorithm to solve such differential equations, our so-called uniform
sparse FFT or short usFFT. The aim is the approximation of the solution u on a discretization {xg ∈ D, g =
1, . . . , G}, G <∞, of the spatial domain D, e.g., a finite element mesh. We receive an approximation

uxg
(·) := u(xg, ·) ≈

∑

k∈I

cusFFTk (uxg
) e2πik·

for each node xg, where the frequency set I is a priori unknown. Our dimension-incremental approach realizes
this by detecting a good frequency set I adaptively as well as computing approximations cusFFTk (uxg ),k ∈ I, of
the corresponding Fourier coefficients for all nodes xg, g = 1, . . . , G, simultaneously. In particular, the usFFT
does not need any a-priori information except for a suitable search domain Γ ⊃ I, which can easily be chosen
large enough without disturbing the algorithm. Further, the detected frequency set I is independent of g and
therefore provides a good approximation basis for all xg, g = 1, · · · , G, uniformly. Also, the usFFT only needs
samples of the solution u at multiple points y, which can be computed by any common PDE solver for each
fixed y. Hence, the method can be adapted to other types of differential equations, boundary conditions or
domains easily by swaping this PDE solver with a suitable one for the new setting.

We test our algorithm on some examples with different diffusion coefficients a(x,y) and uniformly or standard
normally distributed random variables y up to dimension d = 20. The results are analysed using common error
norms. Further, the detected frequency set I as well as the approximated Fourier coefficients cusFFTk (uxg

),k ∈ I,
provide detailed information on the influence and the interactions of the random variables y.

Joint work with: Lutz Kämmerer, Daniel Potts.
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Despite nonconvexity and even nonsmoothness of deep network training, both the gradient descent trajectory
and corresponding sequence of kernels are convergent under minimal assumptions. This talk will explore the
basic proof technique, namely an alignment property of gradient descent that appears more fundamental than
previously discovered implicit bias phenomena, and discuss consequences on sample complexity and comparison
to the standard initial kernel (what is typically called the neural tangent kernel).
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We consider numerical integration in classes, for which we do not impose any smoothness assumptions. We
illustrate how nonlinear approximation, in particular greedy approximation, allows us to guarantee some rate
of decay of errors of numerical integration even in such a general setting with no smoothness assumptions.
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In recent years new application areas have emerged in which one aims to capture the geometry of objects by
means of three-dimensional point clouds, e.g., via LiDAR, stereo vision, or depth-by-motion techniques. Often
the obtained data consist of a dense sampling of the object’s surface, containing many redundant 3D points.
These unnecessary data samples lead to high computational effort in subsequent processing steps. Thus, point
cloud sparsification or compression is often applied as a preprocessing step. The two standard methods to
compress dense 3D point clouds are random subsampling and approximation schemes based on hierarchical tree
structures, e.g., octree representations. However, both approaches give little flexibility for adjusting point cloud
compression based on a-priori knowledge on the geometry of the scanned object. Furthermore, these methods
lead to suboptimal approximations if the 3D point cloud data is prone to noise.

Figure 1: Point cloud sparsification of the 3D Stanford bunny model (top) and resulting triangulations (bottom).

This talk is based on our findings in [3], in which we propose a variational method defined on finite weighted
graphs, which allows to sparsify a given 3D point cloud while giving the flexibility to control the appearance
of the resulting approximation based on the chosen regularization functional. The main idea of our approach
is a novel coarse-to-fine optimization scheme for point cloud sparsification, inspired by the efficiency of the Cut
Pursuit algorithm for total variation denoising proposed in [1]. This strategy gives a substantial speed up in
computing sparse point clouds compared to a direct application on all points as done in previous works, e.g.,
in the seminal work in [2], and renders variational methods now applicable for this task. We compare different
settings for our point cloud sparsification method both on unperturbed as well as noisy 3D point cloud data.

Joint work with: Fjedor Gaede, Martin Burger
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The tangent planes along each parameter-line of a conjugate net, f : R2 ⊃ U → R3, envelop a developable
surface. We call a conjugate net conical, if the developable surfaces along one of the families of parameter-lines
are cones or cylinders. Hence, one can easily approximate a given surface by tangential cone patches, if a conical
parametrization is known. This has interesting applications for cladding of building facades, because conical
strips are only curved in one direction and can be constructed by bending metal sheets or glass. The collection
of cone patches, can be understood as a semi discrete surface itself, by considering the intersection curves of
neighboring cones, which are a discrete family of smooth curves. We found a way to design semi-discrete conical
surfaces by using NURBS curves.
Conical surfaces are not only of practical interest, but also exhibit a rich theory. Similar to isometric surfaces,
which can be characterized by the existence of a transformation group (Darboux transformations), we proved
that a conjugate net is conical if and only if there exist a special family of Combescure transformations, called
conical Combescure transformations (CCT). Since every non zero function of one parameter defines a CCT,
conical nets always appear as a families of parallel related nets. Further, conical nets are invariant under
projective transformations of the ambient space. A special subclass of conical nets, containing the well known
canal surfaces, is given by the orthogonal ones. We proved that an orthogonal net is conical if and only if
every curve of one family of parameter-lines has constant geodesic curvature and consequently lies on a sphere.
This observation enabled us to find an explicit construction for all orthogonal conical nets. Another interesting
subclass are nets, that have tangential cones at both families of parameter-lines. We call them double conical
nets and proved that a conical net is double conical if and only if it is a Koenigsnet. Applying a theorem of
Darboux, gave us that every orthogonal double conical net is Möbius equivalent to a surface of revolution, cone
or cylinder.
Finally, we found a discretization of conical nets as quadrilateral surfaces f : Z2 ⊃ U → R3 and showed that
most of the results for smooth conical nets stay true for their discrete counterparts. In the talk, we will give a
general introduction to conical nets and then present the new results and constructions for both smooth and
discrete conical surfaces.

Joint work with: Christian Müller, Martin Kilian.
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The problem of computing the joint spectral radius (JSR) [1] of several matrices plays an exceptional role
e.g. in the theory of refinable surfaces, subdivision schemes and wavelets. In particular, the JSR characterizes
the smoothness of refinable curves and surfaces and the convergence of subdivision schemes. However, the
problem of the JSR‘s computation is notoriously hard. Currently there exist only two algorithms which can
compute the joint spectral radius exactly, the invariant polytope algorithm [2, 3, 4, 5] and the finite expressible
tree algorithm [6]. The former tries to construct an invariant norm for all matrices, the latter constructs an
infinite tree of matrices whose branches are all multiplicatively bounded.

In this talk we compare these two algorithms, show that they can handle different classes of examples
and construct a new algorithm combining both ideas which converges in all cases when one of aforementioned
algorithms does. The efficiency of the new algorithm is illustrated with various examples. In particular, we
prove the finiteness conjecture [7, 8] for all pairs of binary 3 × 3 matrices, and are able to compute the joint
spectral radius of random matrices of dimension 25 in reasonable time.

Joint work with: Ulrich Reif, Technical University Darmstadt, Germany; Vladimir Yu. Protasov, Lomonosov
Moscow State University, Russia.
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We consider the problem of recovering an element x0 of a low-dimensional model Σ ⊂ Rn (e.g. Σk the set of
k-sparse vectors) from under-determined linear measurements y = Mx0 where M is a linear map. To perform
recovery, we consider the minimization of a convex regularizer subject to a data-fit constraint

x∗ = arg min
Mx=y

R(x). (1)

This minimization can be proven successful for sparse models and their generalizations (such as low rank
models) with the right choice of measurement matrices M (e.g. random Gaussian matrices with enough mea-
surements) [2, 4, 1, 3]. Given a model, we ask ourselves what is the “best” convex regularizer to perform its
recovery. A framework to define the optimality of a convex regularizer for the recovery of a given low dimen-
sional model was introduced in [6]. Based on explicit recovery guarantees of elements of Σ, it defines optimal
regularizers as functions R∗ that maximize a compliance measure AΣ(R) that quantifies the recovery capabilities
of elements of Σ by using minimization (1) with R:

R∗ ∈ arg max
R∈C

AΣ(R). (2)

where C is a set of convex functions. It was shown that the `1-norm was an optimal atomic norm for the recovery
of sparse models in minimal cases (k = 3) for compliance measures based on exact recovery guarantees and
an optimal atomic norm in the general case for compliance measures based on best known recovery guarantees
using the restricted isometry property [6, 7].

In this work (available as a full paper [5]), we build on these ideas and give elementary properties of the
maximization of compliance measures. We show the optimality of the `1-norm and the nuclear norm for the
recovery of sparse and low rank models respectively in the set of coercive continuous convex functions for
compliances based on the restricted isometry property. Finally, we construct near-optimal regularizers for
sparsity in levels models within the set of `1-norms weighed by levels. This result is a first example of explicit
construction of optimal regularizers beyond classical sparsity models.

Joint work with: Rémi Gribonval (Univ Lyon, ENS de Lyon, UCBL, CNRS, Inria, LIP, F-69342 Lyon,
France), Samuel Vaiter (CNRS, Université Côte d’Azur, LJAD, Nice, France).
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We consider the problem of approximating a function in general nonlinear subsets of L2 when only a weighted
Monte Carlo estimate of the L2-norm can be computed. Standard concentration of measure arguments can be
used to provide a worst-case bound for the probability that a certain error is achieved with a prescribed number
of sample points. For model classes of tensor networks, however, this bound depends exponentially on the order
of the networks and is independent of the regularity of the sought function. This behaviour is not observed in
many practical applications but can indeed be demonstrated in numerical experiments. Restricting the model
class to a neighborhood of the best approximation, we can derive a new bound that is able to utilize the
regularity and thereby reduce the number of samples that are required to reach a prescribed accuracy.
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The stock market is known for being volatile, dynamic, and nonlinear. Accurate stock price prediction is
extremely challenging because of multiple (macro and micro) factors, such as politics, global economic conditions,
unexpected events, a company’s financial performance, and so on. Despite the volatility, stock prices are not
just randomly generated numbers. So, they can be analyzed as a sequence of discrete-time data, or, in other
words, as time series observations taken at successive points in time, usually on a daily basis.

In a recent work [1], we were the first to elaborate on the interrelation between the concept of risk, as
perceived by the financial experts, and the energy distribution of continuously compounded returns (defined
as the logarithm of the ratio of consecutive stock prices). To this end, we borrowed the physical definition of
kinetic energy, Ek, of an object, which is defined as the energy that the object possesses due to its motion, and
depends on the object’s mass, m, and its speed, v. Furthermore, the equation Ek = q2/(2m) relates the kinetic
energy and the momentum, q, of an object, which is a vector quantity with both magnitude and direction, thus
it can be used to predict the resulting direction and speed of motion of the object. Then, by relying on the
analogue of mass for stock prices that can be thought of as the value of a stock, and the analogue of speed
which is related precisely to the price variation per time unit, or, in other words, to the stock returns, we can
express the energy and momentum of a stock in financial terms.

In Hamiltonian mechanics, Hamiltonian systems are physical models whose state is characterized by a set
of coordinate vectors, S = (p,q) ∈ R2N , where p ∈ RN represents the position and q ∈ RN the momentum of
the system in time. The behaviour of Hamiltonian systems can be completely described by a single function
H(p,q). Solving the system of Hamilton’s equations, {q̇ = −∇pH(p,q), ṗ = ∇qH(p,q)}, one can obtain the
trajectories S(t) in physical space. The main property of these trajectories is that their total energy represented
by the Hamiltonian function H(S(t)) is constant over time.

In the framework of Machine Learning, a physics-informed neural network, the Hamiltonian Neural Network
(HNN), was proposed in [2]. The HNN is capable of generating a single scalar value corresponding to the energy
of the physical system, whilst predicting the state of the system (i.e., position and momentum) in time.

Motivated by the above concepts, in this work we propose a predictive model for stock prices, in the form
of an HNN architecture. In particular, assuming an unleveraged investment strategy operating with the initial
capital without using any borrowed money, we train an HNN by adding an additional constraint, namely, the
total energy preservation of the Hamiltonian function of the physical system, or equivalently, in financial terms,
of the overall capital invested on a given stock. The input of the HNN consists of the current stock’s position
(i.e., its price) and stock’s momentum (i.e., its value multiplied by its current return), while the output is the
predicted position and momentum in the next time instant (next day in our case). To the best of our knowledge,
this is the first time to bridge the fields of Hamiltonian systems and financial stocks forecasting.

Experimental evaluation with real stocks reveals the promising performance of the proposed framework, when
compared against well-established approaches, such as ARIMA-based models and benchmark neural network
architectures, which are not capable of exploiting the energy preservation constraint.

Joint work with: Frantz Maurer, KEDGE Business School, France.
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We present a new constructive subsampling technique for finite frames to extract (almost) minimal plain
(non-weighted) subsystems which preserve a good lower frame bound. The technique is based on a greedy
type selection of frame elements to positively influence the spectrum of rank one updates of a matrix. It is a
modification of the 2009 algorithm by Batson, Spielman, Srivastava and produces an optimal size subsystem
(up to a prescribed oversampling factor) without additional weights. It moreover achieves this in polynomial
time and avoids the Weaver subsampling (based on the Kadison-Singer theorem) which has been applied in
earlier work, yielding rather bad oversampling constants. In the second part of the talk we give applications for
multivariate function recovery. Here we consider the particular problem of L2 and L∞ recovery from sample
values. In this context, the presented subsampling technique allows to determine optimal (in cardinality) node
sets even suitable for plain least squares recovery. It can be applied, for instance, to reconstruct functions
in dominating mixed-smoothness Sobolev spaces, where we are able to discretize trigonometric polynomials
with frequencies from a hyperbolic cross with nodes coming from an implementable subsampling procedure. In
addition we may apply this to subspaces coming from hyperbolic cross wavelet subspaces. Numerical experiments
illustrate the theoretical findings.

Joint work with: Felix Bartel (Chemnitz), Martin Schäfer (Chemnitz)
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Dynamical low-rank approximation is a framework for time integration of matrix valued ODEs on a fixed-
rank manifold based on a time dependent variational principle. Several applications arise from PDEs on product
domains, but setting up a corresponding well-posed problem in function space (before discretization) may not
be straightforward. Here we present a weak formulation of dynamical low-rank approximation for parabolic
PDEs in two spatial dimensions. The existence and uniqueness of weak solutions is shown using a variational
time-stepping scheme on the low-rank manifold which is related to practical methods for low-rank integration.

Joint work with: Markus Bachmayr, Henrik Eisenmann, and Emil Kieri.
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Current surgical robotic systems are teleoperated and do not have force feedback. Considerable practice is
required to learn how to use visual input such as tissue deformation upon contact as a substitute for tactile
sense. Thus, unnecessarily high forces are observed in novices, prior to specific robotic training, and visual
force feedback studies demonstrated reduction of applied forces. Simulation exercises with realistic suturing
tasks can provide training outside the operating room. This paper presents contributions to realistic interactive
suture simulation for training of suturing and knot-tying tasks commonly used in robotically-assisted surgery.
To improve the realism of the simulation, we developed a global coordinate wire model with a new constraint
development for the elongation. We demonstrated that a continuous modeling of the contacts avoids instabilities
during knot tightening. Visual cues are additionally provided, based on the computation of mechanical forces
or constraints, to support learning how to dose the forces. The results are integrated into a powerful system-
agnostic simulator, and the comparison with equivalent tasks performed with the da Vinci Xi system confirms
its realism.

Figure 1: Visual stress on a thread from floppy (A) to tight (B, C) condition until suture breakage with tension
release (D).

Joint work with: François Jourdes, Jérémie Allard, Christian Duriez and Barbara Seeliger.

References

[1] Tool-tissue forces in surgery: A systematic review Golahmadi, Aida Kafai and Khan, Danyal Zaman and
Mylonas, George P and Marcus, Hani J,https://doi.org/10.1016/j.amsu.2021.102268

[2] Effects of visual force feedback on robot-assisted surgical task performance Reiley, Carol E and Akin-
biyi, Takintope and Burschka, Darius and Chang, David C and Okamura, Allison M and Yuh, David D,
10.1016/j.jtcvs.2007.08.043

[3] Proposal and evaluation of visual haptics for manipulation of remote machine system Haruna, Masaki and
Ogino, Masaki and Koike-Akino, Toshiaki, https://doi.org/10.3389/frobt.2020.529040

[4] Suturing simulation based on complementarity constraints Guébert, Christophe and Duriez, Christian and
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Computing dominant eigenpairs of a symmetric matrix is one of the most prototypical problems for Rieman-
nian optimization. In particular, it naturally leads to the maximization of a smooth objective function on the
Stiefel manifold (of orthonormal matrices) or the Grassmann manifold (of subspaces). Several well-known algo-
rithms in numerical linear algebra for the symmetric eigenvalue problem can be elegantly analyzed by exploiting
this Riemannian point of view.

In this talk, we revisit this program and show how recent advances in non-convex optimization, like weak
quasi convexity, can be generalized to the Grassmann manifold and the symmetric problem matrix. In particular,
in contrast to existing results on local convexity, we are able to show that Riemannian steepest descent linearly
converges to the dominant subspace if it is started from any initial point (excluding a measure zero set).

While steepest descent is not a competitive algorithm compared to Krylov methods or even subspace itera-
tion, it has the benefit that it is very robust to perturbations in the matrix and that it can be accelerated with
a momentum term. We will illustrate this empirically and compare to existing methods.

Joint work with: Foivos Alimisis (Geneva) and Yousef Saad (Minnesota).
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The geometric Hermite data consists of point samples and their associated tangent vectors of unit length.
Thus, the geometric Hermite interpolation problem is to interpolate such data. Extending the classical Hermite
interpolation of functions, this geometric Hermite problem has become popular in recent years and has ignited
a series of solutions in the 2D plane and 3D space such as in [1, 2, 4, 5, 6]. We propose a general approach for
constructing a broad class of operators approximating high-dimensional curves, which are based on geometric
Hermite data. In particular, we present a method for approximating curves that is valid in any dimension.

As the basic building block, we pose the notion of Hermite average. In my talk, I will present a formal
definition of the latter, while addressing some of the fundamental challenges accompanying such an attempt. I
will introduce the Bézier average which is an example of a Hermite average, and demonstrate how we use it to
modify subdivision schemes which are based on repeated averages. The special case of interpolating Hermite
data by repeatedly refining it with Hermite averages, is proved to converge. Furthermore, its limit inherits
geometric properties of the average, such as circle preserving. We will address the latter and discuss the key
arguments in the proof.

We will also consider some properties of approximation. While subdivision schemes commonly achieve their
full approximation power under restricted assumptions about the sampling method as investigated in [3], our
result is an interpolatory approximation which is robust to sampling, that is, it does not depend on a particular
sampling policy. In fact, it is implied numerically that refining data by Bézier average yields a fourth order
approximation. This, as well as other numerical examples, elucidate the advantages of our approach. Finally,
we observe that such an approach naturally extends to a more general setting of approximating manifold valued
curves by a suitable adjustment of the Hermite average.

The figure below presents the process of refining two given Hermite samples by inserting their Bézier average.

Joint work with: Nira Dyn, Nir Sharon.
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An important theorem by É. Cartan [2, p. 183, Thrm. 8.53] states that two curves are related by a group
of transformation iff their signature curves w.r.t. the transformation group are identical. Signature curves are
defined by differential invariants, such signatures of planar curves involve the evaluation of invariant differential
measures. In practice, planar curves are digitally represented as a discrete set of points, which implies that
the computation of differential invariant quantities, such as the group-curvature at a point, can only be nu-
merically approximated using finite differences techniques. Since differential invariants often involve high-order
derivatives, their approximations are prone to numerical instabilities due to sensitivity to sampling noise.

Here, we focus on the similarity group of transformations. Also known as uniform scaling, similarity trans-
forms introduce numerical challenges for constructing reparametrization-invariant analysis procedures. E.g.,
similarity-invariant heat flow of planar curves, traditionally used to produce multi-scale representations, is an
unstable operation in the uniform scaling case [1]. Motivated by the above challenges, we propose a novel
deep-learning approach, to produce numerically-stable and reparametrization-invariant approximation models
for the differential invariants of planar curves w.r.t. the similarity group. We qualitatively evaluate our results
by plotting matching invariant signatures for equivalent curves w.r.t. the similarity group.

The following figure presents an example of similarity-invariant signature-curves estimated by our learning
models. Left: Two equivalent curves w.r.t. the similarity group, both sampled non-uniformly. The black points
define corresponding reference points. Curve traversal is done in clock-wise fashion. Top-Right: Our learned
group-curvature at each point as a function of the point indices. The two plots do not align since the two
curves were sampled differently. Bottom-Right: Our learned group-curvature at each point as a function of
our learned group arc-length. When learning the group arc length, these new signature graphs do align.

Joint work with: Ron Kimmel, Technion.
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Our goal is to study whether spatial polynomial curve can be projected to a planar PH curve. This problem
is motivated by [1], where the PH curves possessing projection to PH curve were constructed. By considering
the set of all tangent directions to a given spatial curve C as the subset of projective plane P2 we obtain a planar
curve TC whose points correspond to the tangent directions to the original spatial curve. Since PH property is
intimately related to the tangent behaviour of the curve it is not surprising that the it is encoded in the geometry
of TC . Indeed, with some additional assumptions, we show that C is PH curve if and only if TC intersects the
so called absolute conic in smooth points with even multiplicity. Similar geometric characterization can be
formulated for planar curves as well. This approach enables to study the problem with the tools of projective
geometry of planar curves. For example it can be easily seen that generic spatial cubic possesses exactly two
orthogonal projections on PH curve, whereas curves of higher degrees cannot be projected in general. This
motivates us to study obligue projections as well. Thus we will close by showing how spatial quintics can be
projected in order to obtain PH curves.

Joint work with: Miroslav Lávička.
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Certain types of freeform shells can be fabricated by bending originally flat and straight slats into curved structural
elements. In their final position, one obtains a grid of surface strips forming the basis of an architectural structure. We
present recent work on structures which are formed by three or four families of strips, arranged in a web.

In their final curved position, the strips can be modeled as rectifying developable surfaces of their boundaries: Each
tangent plane of a strip is orthogonal to the osculating plane at the corresponding boundary curve point. Thus, if a strip
is placed orthogonal to an underlying reference surface S, it has to follow an asymptotic curve of S. If it is arranged
tangentially to S, if follows a geodesic curve on S. Hence, these gridshells are designed from hybrid webs of asymptotic
(A) and geodesic (G) curves on freeform surfaces.

Previous work focused mainly on a quadrilateral grid arrangement. If both families of strips are placed orthogonal
to S, one obtains the asymptotic gridshells (AA) of Eike Schling [1]. Under the additional constraint of orthogonal node
angles, the underlying surface is a minimal surface. The case (GG) of two tangential families of strips has recently been
studied from the perpective of deployment from an arrangement of planar straight strips [2].

We present a computational workflow for the design of various types of hybrid asymptotic geodesic webs, using
methods of discrete differential geometry, numerical optimization and a spline representation for the final strips. The
following types are presented:

• AGG web: geodesic net (G-net) with one family of diagonal asymptotic curves (Fig.1-(a)).

• AAG web: asymptotic net (A-net) with one family of diagonal geodesic curves (Fig.1-(b)).

• AAGG web: A-net and G-net are diagonal to each other (Fig.1-(c)).

Physical models are made to verify the computational process and simulate the kinetic behavior during the erection
process.

(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web(a) AGG web (b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web(b) AAG web (c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips(c) AAGG web and unrolled strips (d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model(d) AAG timber model

Figure 1: Various types of hybrid asymptotic geodesic gridshells. Geodesic strips (red) are tangent to the underlying
surface and asymptotic strips (blue) orthogonal to the surface. (c) one family of asymptotic and geodesic strips are also
shown in their flat position. (d) A timber prototype of an AAG gridshell.

Joint work with: Helmut Pottmann, Eike Schling, Sebastian Hoyer.
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In this talk, we will discuss what information about an entire function may be recovered from measurements
of its magnitude on different subsets of the complex plane. This phase retrieval problem for entire functions
plays a decisive role in many contemporary works on the recovery of signals from magnitude-only measurements
[1, 2, 4, 5]. We will present the theory for the phase retrieval of entire functions starting with some basic
observations. We will then discuss Mc Donald’s characterisation of entire functions whose magnitudes agree on
a single line in the complex plane [6] and, finally, propose some extensions to situations in which magnitude
information on two or more lines is available [7].

Our presentation will be based on well-known complex-analytic techniques: the Hadamard factorisation
theorem, in particular, plays an important role in the characterisation of entire functions whose magnitudes
agree on certain lines in the complex plane. The main new results which we will discuss are

1. a full characterisation of all (finite order) entire functions whose magnitudes agree on two arbitrary lines
in the complex plane — this extends work by Jaming [4] — and

2. a full characterisation of all entire functions of exponential-type whose magnitudes agree on infinitely
many equidistant parallel lines.

These new results have interesting applications to Gabor phase retrieval. Among other things, they allow
for a full characterisation of all L2-functions whose Gabor transform magnitudes agree on two arbitrary lines in
the time-frequency plane. We also emphasise that our theory can be used to generate functions in L2 which do
not agree up to global phase but whose magnitudes agree on infinitely many equidistant parallel lines. We have
recently used this insight to find counterexamples for sampled Gabor phase retrieval [1], i.e. functions in L2

which do not agree up to global phase but whose Gabor transform magnitudes agree on fairly general lattices
(this work has just been generalised in [3]).

Finally, a good understanding of the theory of functions allows for the construction of many more interesting
examples. Personal favourites of ours are the “universal counterexamples” for sampled Gabor phase retrieval:
those are functions f ∈ L2(R) and (gn)n≥1 ∈ L2(R) such that for all n ≥ 1, it holds that f and gn do not agree
up to global phase while their Gabor transform magnitudes agree on the semidiscrete set R× 1

nZ [7].

Joint work with: Prof. Rima Alaifari, Seminar for Applied Mathematics, ETH Zurich
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We consider meshless solving of PDEs

Lu = f on Ω, u = g on ∂Ω (1)

via symmetric kernel collocation by using greedy kernel methods. In this way we avoid the need for a mesh
generation, which can be challenging for non-standard domains Ω or manifolds. We introduce and discuss
different kind of greedy selection criteria, such as the PDE-P -greedy and the PDE-f -greedy.
Subsequently we analyze the convergence rates of these algorithms and provide bounds on the approximation
error in terms of the number of greedily selected points. Especially we prove that target-data dependent
algorithms exhibit faster convergence rates.
The provided analysis is applicable to PDEs both on domains and manifolds. This and the advantages of
target-data dependent algorithms is highlighted by numerical examples.

Joint work with: Daniel Winkle, Gabriele Santin, Bernard Haasdonk.
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Figure 1: Visualization of the selected points for PDE-P -greedy (left) and PDE-f -greedy (right) for a Laplace
equation with Dirichlet boundary conditions on a domain which is given by a circle without a cone. The circled
points correspond to points on the boundary ∂Ω. The PDE-f -greedy points (right) are better adapted to the
given PDE and the domain and therefore give a better approximation of the solution.
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In this talk, we show a new way to study the theory of regularized learning for generalized data in Banach
spaces including representer theorems and convergence theorems. The generalized data are composed of linear
functionals and real scalars as the input and output elements to represent the discrete information of black-box
and white-box local models. By the extension of the classical machine learning, the empirical risks are computed
by the generalized data and the loss functions. According to the techniques of regularization, the exact solutions
are approximated globally by minimizing the regularized empirical risks over the Banach spaces. The existence
and convergence of the approximate solutions are guaranteed by the relative compactness of the generalized
input data in the predual spaces of the Banach spaces. The work of the regularized learning provides another
road to investigate the algorithms of machine learning including the interpretability in approximation theory, the
nonconvexity and nonsmoothness in optimization theory, and the generalization and overfitting in probability
theory. Based on the theorems of the regularized learning, we will construct the hybrid algorithms combining
support vector machines, artificial neural networks, and decision trees for our current research projects of the
big data analytics in education and medicine.
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The objective of this study is to present a shape-preserving non-linear subdivision scheme generalizing the
exponential B-spline of degree 3, which is a piecewise exponential polynomial with the same support as the
cubic B-spline. The subdivision of the exponential B-spline has a crucial limitation in that it can reproduce
at most two exponential polynomials, yielding the approximation order two. Also, finding a best-fitting shape
parameter in the exponential B-spline is a challenging and important problem. In this regard, we present a
method for selecting an optimal shape parameter and then formulate it in the construction of new refinement
rules. As a result, the new scheme provides an improved approximation order four while maintaining the same C2

smoothness as the (exponential) B-spline of degree 3. Moreover, we show that the proposed method preserves
geometrically important characteristics such as monotonicity and convexity, under some suitable conditions.
Some numerical examples are provided to demonstrate the ability of the new subdivision scheme.

Joint work with: Hyoseon Yang.
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G1 Hermite interpolation method for spatial PH curves

over planar PH curves
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A special type of spatial Pythagorean hodograph (PH) curves, whose planar projection also has the PH
property, were introduced recently in [1]. In this work, we present a G1 Hermite interpolation method for this
type of curves. While the projection plane is fixed as the xy plane, these curves can be regarded as spatial PH
curves over planar PH curves, which we call PH over PH (PHoPH) curves. Because of the additional constraint,
PHoPH curves should have more complicated algebraic structure than usual spatial PH curves. We investigate
this structure using the quaternion algebra to obtain a compact representation of PHoPH from quaternion
generator polynomials. Based on this representation, we address the G1 Hermite interpolation problem using
quintic PHoPH curves. The problem is formulated as a system of nonlinear equations involving trigonometric
functions, which can be solved by numerical methods. We analyze the feasibility of this problem and present
some computed examples.

Joint work with: Soo Hyun Kim, Hwan Pyo Moon.
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In this talk, we report a number of curious cases in the numerical solutions of specific geometric variational
problems [1, 2] in which (i) the solution surface of the continuous problem is invariant under a symmetry group
G, (ii) that the space of finite-dimensional space of discrete solutions accomodates surfaces invariant under a
finite subgroup H of G, (iii) but yet the optimal discrete solution does not possess the H-symmetry one would
expect.

At the same time, many numerical optimization algorithms – gradient descent, accelerated gradient descent,
BFGS etc. for unconstrained problems, and their variants for constraint problems – are invariant under or-
thogonal change of coordinates. In the aforementioned situations, or in situations when we solve a geometric
optimization with an initial guess with the wrong symmetry, this innocent invariance in the optimization algo-
rithm means that the numerical optimization method can get stuck at a suboptimal saddle point. In the latter
case, the saddle point is likely far from being optimal or desirable. But in the former case, the symmetric but
suboptimal saddle point, by an approximation result to be presented, can actually approximate the continuous
solution better than the discrete minimizer.

Joint work with: Tom Duchamp and Isaiah Siegl, and my co-authors in the two articles below.
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Bear subdivision schemes for modeling smooth surfaces
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We suggest a new class of stationary subdivision schemes based on matrix dilation for modeling smooth
surfaces. In each iteration our scheme doubles the number of nodes, their new coordinates are weighted averages
of old coordinates along one direction. This direction changes every iteration and never repeats. We propose
a method for calculating the Holder regularity of limit surfaces based on the work [1] and program [2]. The
results of these calculations are surprising and show that the regularity of such schemes in some cases exceeds
the regularity of classical schemes of the same order.

Recall that one-dimensional schemes are defined by a finite set of the coefficients {ck}k∈Z. A corresponding
subdivision operator S maps a sequence u ∈ `∞(Z) to the sequence Su ∈ `∞(Z): Su(k) =

∑
j∈Z ck−2j · u(j).

Let f0(·) = u(·) be an initial function (Z→ R) (control polygon). Then the next sequence f1 is defined on Z/2
as f1( 1

2k) = Su(k). Repeating this process we get sequences fi defined on Z/2n which in case of the convergence
tend to a limit curve (pointwise).

In the case of matrix dilation, the subdivision operator S : `(Z2)→ `(Z2) is generalized as (see, for example,
[3]) Su (k) =

∑
j∈Z2 ck−Mj · u (j), where M is an expanding matrix (i.e. all its eigenvalues |λi| > 1).

Our schemes exploit a Bear matrix MB =

(
1 −2
1 0

)
. It is expanding with the property m := |detM | = 2. It

is known that there are three different (up to affine similarity) expanding integer matrices withm := |detM | = 2,
the Bear matrix is one of them.

The coefficients of our schemes are defined as follows

c(k1, 0) =
1

2K−1

(
K

k1

)

for k1 = 0, 1, . . . ,K, where K is a parameter. The scheme with K = 4 is illustrated on fig 1. All these schemes
have a low complexity because of a small number of coefficients (all coefficients are from one line). Using the
method based on the notion of joint spectral radius of transition matrices, we calculate the regularity of their
limit surfaces for K ≤ 5. The most interesting result is that the scheme with K = 3 produces C2 surfaces, the
scheme with K = 4 produces C3 surfaces, and the scheme with K = 5 produces C4 surfaces which is better
than for corresponding classical schemes with the same degree of th mask.

Figure 1: A Dupin cyclide generated by our scheme with K = 4: iterations 0, 2 and 4.
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Analyticity and sparsity in uncertainty quantification for

PDEs with Gaussian random field inputs
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We establish summability results for coefficient sequences of Wiener-Hermite polynomial chaos expansions
for countably-parametric solutions of linear elliptic and parabolic divergence-form partial differential equations
with Gaussian random field inputs. The proof is based on analytic continuation of parametric solutions into the
complex domain. This holomorphy-based argument yields a “differentiation-free” sparsity analysis in various
scales of function spaces. It also applies to certain posterior densities in Bayesian inverse problems subject
to Gaussian priors on uncertain inputs from function spaces. This allows us to prove dimension-independent
convergence rates of various constructive high-dimensional deterministic numerical approximation schemes such
as single-level and multi-level versions of anisotropic sparse-grid Hermite-Smolyak interpolation and quadrature
in both forward and inverse computational uncertainty quantification. Finally we discuss some implications for
neural network approximation.

Joint work with: Dinh Dũng, Van Kien Nguyen, Christoph Schwab
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[1] Dinh Dũng, Van Kien Nguyen, Christoph Schwab and Jakob Zech. Analyticity and sparsity in uncertainty
quantification for PDEs with Gaussian random field inputs. arXiv:2201.01912, 2022.

[2] Deep Learning in High Dimension: Neural Network Approximation of Analytic Functions in L2(Rd, γd).
Christoph Schwab and Jakob Zech. arXiv:2111.07080, 2021.

229
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any arity
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Hermite subdivision schemes are particular vector subdivision schemes which produce function vectors con-
sisting of consecutive derivatives of a certain function. The convergence and smoothness of Hermite subdivision
schemes have been widely studied, while they are restricted in binary case. To fill this theoretical gap in the
literature, we study the convergence of Hermite subdivision schemes covering every arity, which can be seen as a
generalization of [7]. The convergence analysis is based on the connections among Hermite subdivision schemes,
vector subdivision schemes and refinable function vectors. We provide a tool used to estimate the smoothness
of Hermite subdivision schemes of every arity by exploiting a quantity defined by sum rules and can construct
Hermite subdivision schemes of arbitrarily high smoothness from a convergent vector scheme of any arity.

Joint work with: Hongchan Zheng(Northwestern Polytechnical University), Jie Zhou(Xian Polytechnic U-
niversity).
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Suppose that S is a surface and G ⊂ S is an embedded graph. In many applications, in algorithm design,
geometry processing, or even just to represent the embedding, there is a basic task: to cut S into a single disk.
When S is orientable, it has long been known how to compute a canonical cutting system that is also ”short”:
each arc of the system runs along each edge of G at most a constant number of times.

In this talk we survey what is known about such cutting problems. We then explain how to obtain a short
canonical system when S is non-orientable.

Joint work with: Niloufar Fuladi and Alfredo Hubard.

References

[1] N. Fuladi, A. Hubard and A. de Mesmay. Short topological decompositions of non-orientable surfaces. 38th
International Symposium on Computational Geometry (SoCG 2022), to appear.

231



Super-resolution of generalized spikes and spectra of

confluent Vandermonde matrices

Nuha Diab
Department of Applied Mathematics, Tel-Aviv University, Tel-Aviv, Israel.

nuhadiab@tauex.tau.ac.il

The problem of computional super-resolution (SR) is to recover the fine details of an unknown object from
inaccurate measurements of inherently low resolution (see [1]). In recent years, there is much intrest in the
problem of reconstructing a signal modeled by a linear combination of Dirac δ−distributions with higher-order
derivatives:

µ(x) =
s∑

j=1

n−1∑

l=0

aj,lδ
(l)(x− ξj), ξj ∈ [−π, π) (1)

from noisy Fourier measurements:

yk := µ̂(k) + ηk, k = 0, 1, ...,M, |ηk| ≤ ε, (2)

where δ(l) is the l-th distributional derivative of the Dirac measure. The stability of this generalized problem
is of importance in several applications including modern sampling theory beyond the Nyquist rate, algebraic
signal recovery, and multi-exponential analysis, to name a few (see [4] and references therein).

For n = 1, the measurment vector y = {yk}Mk=0 ∈ CM+1 can be expressed as y = V a + η, where V is the
(M + 1) × s Vandermonde matrix with the nodes on the unit circle:

V := [eikξj ]j=1,...,s
k=0,...,M .

In order to describe the stability of this inverse problem, suppose that the nodes ξj belong to a grid of step size
∆, and define the super-resolution factor (SRF) as 1

(M∆) . Suppose that at most ℓ ≤ s nodes form a ”cluster”

of size O(∆). In the ”super-resolution regime” SRF ≫ 1 [3, 2] showed that σmin(V ) scales like SRF ℓ−1 and
consequently the worst-case reconstruction error rate of µ as in (1) from noisy measurements (2) is of the order
SRF 2ℓ−1ε and it is minimax, meaning that on one hand, it is attained by a certain algorithm for all signals
of interest, and on the other hand, there exist worst case examples for which no algorithm can achieve an
essentially smaller error.

In this work we extend the above methods and results to n = 2. In particular, the Vandermonde matrix V
is replaced by the confluent Vandermonde matrix U , which is defined as:

U := [eikξj kei(k−1)ξj ]j=1,...,s
k=0,...,M .

Under the partial clustering assumptions, we prove a sharp lower bound for the smallest singular value of U in
the super-resolution regime, and show that it scales like SRF 2ℓ−1. We also obtain sharp minimax bounds of
order SRF 4ℓ−1ε for the problem of sparse superresolution on a grid.

Joint work with: Dmitry Batenkov.
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A novel approach to the construction of polynomial minimal surfaces (surfaces of zero mean curvature) with
isothermal parameterizations from Pythagorean triples of complex polynomials will be presented. The resulting
surfaces turn out to be Pythagorean normal (PN), i.e., their unit normal vectors have a rational dependence
on the surface parameters. This construction generalizes a prior approach based on Pythagorean triples of real
polynomials, and yields more shape parameters for surfaces of a specified degree. Moreover, when one of the
complex polynomials is just a constant, the minimal surfaces have the Pythagorean–hodograph (PH) preserving
property (a planar PH curve in the parameter domain is mapped to a spatial PH curve on the surface). Cubic
and quintic examples of these minimal PN surfaces will be presented, including examples of solutions to the
Plateau problem, with boundaries generated by planar PH curve segments in the parameter domain. Finally,
an application to the problem of interpolating three given points in the space as the corners of a triangular
cubic minimal surface patch, such that the three patch sides have prescribed lengths, will be addressed.

Joint work with: Rida T. Farouki, Marjeta Knez and Vito Vitrih.
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Dũng Dinh, 229
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