Planar Polynomial PH Curves revisited

Salim Taleb
Ceramaths Lab
UPHF
59313 Valenciennes, France
salim.taleb@uphf.fr

A polynomial Pythagorean-hodograph (PH) curve has the property that its parametric speed - i.e., the derivative of the arc length with respect to the curve parameter - is a polynomial rather than the square root of a polynomial. Many computational advantages derive from this property and are useful in offsets, path planning, geometric design and similar applications.

In this talk, a geometric characterization for planar polynomial PH curves is presented. It is based on a variant of the dual representation of planar curves, where a curve may be regarded as the envelope of its tangent lines. The approach used here is illustrated with many examples.

A comparison is made with the state-of-art method : three-stage procedure that transforms any differentiable plane curve $r(t)$ into a PH curve $\hat{r}(t)$ through the use of the conformal map $z \rightarrow z^{2}$. In this framework, the Pythagorean structure of the hodograph $\hat{r}^{\prime}(t)$ is achieved through the complex variable model. The a priori implementation is done through an algebraic model.

In the technique presented here, the Pythagorean property of the hodograph is achieved by a suitable geometric model. Notorious results for cubic PH curves and quintic PH curves are generalized. This geometric characterization provides an alternative three-stage procedure of generating plane polynomial PH curves. This work contributes to a different explanation of the theory and the applied algorithms for planar PH curves. It can be developed in various other related topics.

