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In X-ray tomography the task is to reconstruct an unknown density from its projections in a number
of directions. Stable recovery requires a sufficient number of projections and the knowledge of the relative
projection angles. In some applications, however, projection angles are unknown; an important example is single-
particle Cryo-EM. With small or moderate noise it is relatively straightforward to infer the viewing directions
in Cryo-EM [1]. As the noise increases, direction recovery becomes hard. We propose a general graph-learning
framework to recover unknown parameters in Cryo-EM-like problems where the unknown quantity (such as
viewing direction) has a manifold structure.

Concretely, let M denote a smooth manifold and µ ∈ P1(M) a probability measure on M. We observe
(very) noisy measurements through a function f : M → RN ,

yi = f(θi) + ηi, (1)

where θi
i.i.d.∼ µ, and ηi

i.i.d.∼ N (0, σ2IN ) is a Gaussian random vector. Put differently, we observe yi
i.i.d.∼ ν where

ν
def.
= f#µ ⋆N (0, σ2IN ), f#µ denotes the pushforward of µ by f , and ⋆ is the convolution of measures.
Fig. 1 shows an embedding of 3D Cryo-EM projections. The underlying metric quotients out the so-called

in-plane rotations so the embedding lives on SO(3)/S1 ≃ S2 rather than SO(3) [2]. The function f corresponds
to the 3D X-ray transform and the underlying manifold is M = S2 , see Fig. 1a. In the absence of noise, the
parameters (θi)i on the sphere can be deduced from the graph Laplacian embedding of the measurements (yi)i;
Fig. 1b. For large noise, the graph Laplacian embedding collapses and the relative position of the observation
cannot be deduced; Fig. 1c.

This is because the noisy neighborhood graph contains false and misses true links. We propose to use the
recent WalkPooling neural network architecture [3] to denoise the K-NN graph. The WalkPooling architecture
captures the topological properties of M by learning to construct graphs from points sampled from the distri-
bution µ. This leads to significant improvements in embedding quality and enables reconstruction at extreme
noise levels; Fig. 1d.

(a) Underlying manifold: S2. (b) Noiseless embedding. (c) Noisy embedding(0dB). (d) WalkPooling (0dB).

Figure 1: Single particle 3D cryo-EM motivation example: the measurments are function of parameters in
S2. The Graph-Laplacian embedding allows to retrieve the relative position of each projection only using
WalkPooling to denoise the graph.

Joint work with: Ivan Dokmanić, Vinith Kishore, Cheng Shi.
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