
Nonsmooth Implicit Differentation for Machine Learning

Antonio Silveti-Falls
Toulouse School of Economics
tonys.falls@gmail.com

Introduction Many problems in machine learning can be solved efficiently by taking advantage of implicit differentia-
tion, from hyperparameter tuning [1] to training neural networks with implicitly defined layers [3, 2]. The key ingredient
to applying implicit differentiation is the implicit function theorem which guarantees the existence of an implicit function
and its differentiability, with a calculus for the implicit gradient. A bottleneck for extending such methods in practice is the
lack of smoothness present in many machine learning problems. Although there is a rich literature on nonsmooth implicit
function theorems already, the focus has primarily been on proving the existence and regularity of implicit functions rather
than on developing a practical calculus.

Main Result We construct a theory of implicit differentiation for path differentiable functions [4] with a flexible calculus
that allows one to compute implicit gradients using the analogous formulas from the smooth setting, in a way that is
compatible with backpropagation and algorithmic differentiation. Path differentiable functions were studied in [4] as
a subset of locally Lipschitz functions which admit a conservative Jacobian, denoted JF for a function F . Our main
contribution is the following theorem.
Theorem. Let F : Rn × Rm → Rm be path differentiable and (x̂, ŷ) ∈ Rn × Rm be such that F (x̂, ŷ) = 0. Assume
JF (x̂, ŷ) is convex and ∀[AB] ∈ JF (x̂, ŷ), B is invertible. Then ∃U ⊂ Rn a neighborhood of x̂ and a path differentiable
function G such that

∀x ∈ U F (x,G(x)) = 0.

A conservative Jacobian of G can be computed from the formula

JG (x) =
{
−B−1A : [A B] ∈ DF (x,G(x))

}
.

Applications With the previous theorem and the framework of conservative Jacobians, we are able to prove almost sure
convergence guarantees for training neural networks with implicitly defined layers. These are networks with layer outputs
defined as fixed points to an equation [2] or solutions to an optimization problem [3].

We also examine hyperparameter tuning for the LASSO. The problem of choosing the best weight λ for the LASSO
problem can be formulated as a bilevel optimization problem:

min
λ∈R

C(β̂(λ)) such that β̂(λ) ∈ argmin
β∈Rp

1

2
∥Xβ − y∥22 + λ ∥β∥1

where C is some measure of task performance, e.g. the cross validation loss, the holdout loss, the stein unbiased risk
estimate, etc. By writing the optimality condition as a fixed point equation, we can apply our theorem to compute a
conservative Jacobian for the solution β̂(λ).
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