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Let G be graph and let dG(u, v) denote the distance between vertices u and v of G. Three key values
associated to the graph are

• the Wiener index, defined by
∑

u,v∈V (G) dG(u, v) and closely related to the average distance of G;

• the sum of inverse geodesic lengths, defined as
∑

u ̸=v∈V (G)
1

dG(u,v) and closely related to the total efficiency

of G;

• the diameter, defined by max{dG(u, v) | u, v ∈ V (G)}.

All these values can be computed trivially by explicitly computing all the pairwise distances in G. Can we
compute these values faster, without computing all the pairwise distances? Lower bounds assuming the Strong
Exponential Time Hypothesis (SETH) were shown by Roditty and Vassilevska Williams [3]. Most interestingly,
if the graph has n vertices and Θ(n) edges, no algorithm can compute those values in O(n1.99999), assuming
SETH.

I will discuss how these values can be computed in subquadratic, namely Õ(n9/5) time, for n-vertex planar
graphs and graphs on surfaces of constant genus. The main ideas are from [1, 2], but I will explain an alternative
point of view that represents all distances in the graph a compact way.
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