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Neural networks are used to approximate functions with success in many applications. In line with the
works [1, 2, 3], we are interested in understanding their approximation power in practice and in theory. Re-
garding practical applications, a key question is to be able to compare approximation properties of quantized
versus unquantized neural networks. Another important question is to better understand non-trivial situations
where neural networks can be expected (or not) to have better approximation properties than the best known
approximation methods, quantized or not.

We are concerned with quantitatively characterizing the optimal polynomial speed γ∗approx(C|Σ) at which
all functions of a set C, subset of a pseudo-metric space F , can be approximated by a sequence Σ = (ΣM )M∈N
of sets ΣM of ”simpler” functions, such as ones that can be represented by polynomials of degree M , or
ReLU neural networks with M non-zero parameters. We introduce a new property of the sequence Σ, called
∞-encodability, which forbids degenerate cases, where for example Σ1 = C is already so rich that it yields
unreasonable approximation rates. We show that:

(i) if Σ is ∞-encodable, then the Kolmogorov-Donoho complexity γ∗encod(C), which measures the best poly-
nomial asymptotic speed at which C can be encoded as binary sequences, and which is known for many
classical functions sets such as balls of Sobolev spaces, bounds from above γ∗approx(C|Σ);

(ii) many sequences Σ = (ΣM )M∈N are ∞-encodable: when ΣM contains M -terms linear combination of a
dictionary, with boundedness conditions on the coefficients, or when ΣM is Lipschitz-parameterized by
some bounded set in finite dimension, the latter includes the case of ReLU neural networks for which we
identify ”simple” sufficient conditions on the considered architectures for this to hold;

(iii) when ∞-encodability is inherited from Lipschitz-parameterization, a simple quantization scheme turns Σ
into a quantized sequence whose elements can be represented in a computer, attaining the same polynomial
approximation speed as Σ on every set C.

In light of point (ii), point (i) unifies and generalizes [2, Theorem VI.4][3, Theorem 5.24][4, Proposition 11].
Our framework applied to ReLU neural networks guarantees that uniformly quantized sparse ReLU networks

with standard growth assumption on sparsity, depth and weight magnitudes, approximate every set of functions
C with the same polynomial rate as their unquantized version. It also shows that approximation methods based
on an∞-encodable sequence defined with ReLU neural networks share a common upper-bound on approximation
rates with other classical approximation methods also based on∞-encodable sequences. As a consequence, given
C, if an ∞-encodable sequence is known such that γ∗approx(C|Σ) = γ∗encod(C), then no improved approximation
rate can be hoped for using ReLU networks.
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