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Chebyshev polynomials are a classical topic in scientific literature, and they have been considered in many
fields of research. For example, the related zeros are particularly suitable for polynomial interpolation on the
interval [−1, 1] due to their well conditioning. Moreover, the extrema of Chebyshev polynomials, along with
the set {−1, 1}, form the set of Chebyshev-Lobatto (CL) points, which are quasi-optimal interpolation nodes
as well [1, 2]. In [3], we introduced and analysed a new class of (β, γ)-Chebyshev functions and points, which
can be seen as a generalisation of classical Chebyshev polynomials and points (see Figure 1). The achieved
theoretical findings have been employed in [4] for reducing the effects of both Runge’s and Gibbs phenomena,
in the framework of the fake nodes approach [5].

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 1: Left: an example of Chebyshev polynomial (solid line), Chebyshev points of the first kind (blue circles)
and CL points (red crosses). Centre and right: two examples of (β, γ)-Chebyshev functions (solid line), (β, γ)-
Chebyshev points (blue circles) and (β, γ)-CL points (red crosses). Depending on the choice of the parameters,
they can be symmetric or not with respect to the origin.

In the square [−1, 1]2, unions of tensor-product Chebyshev grids provide sets of nodes that guarantee a
stable polynomial interpolation process and that can be characterised as self-intersection or square-tangency
points of Lissajous curves [6]. This paves the way for the study of (β, γ)-Chebyshev grids and for the analysis
of polynomial approximation schemes along (β, γ)-Lissajous curves in [−1, 1]2, in view of designing a unified
generalised framework.
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