Spherical cap discrepancy of perturbed lattices under the Lambert projection

Damir Ferizović
KU Leuven
damir.ferizovic@kuleuven.be

Given any full rank lattice $\Lambda \subset \mathbb{R}^{2}$ and a natural number N, we regard the point set $\Lambda / N \cap(0,1)^{2}$ under the Lambert map to the unit sphere \mathbb{S}^{2}, and show that its spherical cap discrepancy is at most of order N, with leading coefficient given explicitly and depending on Λ only. The proof is established using a lemma that bounds the amount of intersections of certain curves with fundamental domains that tile \mathbb{R}^{2}, and even allows for local perturbations of Λ without affecting the bound, proving to be stable for numerical applications. A special case yields the smallest constant for the leading term of the cap discrepancy for deterministic algorithms up to date.

References

[1] D. Ferizović. Spherical cap discrepancy of perturbed lattices under the Lambert projection. In Preparation, 2022.

