Projective equivalences and μ -bases of rational curves in any dimension.

Juan G. Alcázar Universidad de Alcalá(UAH), Madrid, Spain juange.alcazar@uah.es

The notion of a μ -basis was developed several years ago in the context of curves implicitization [2]. From a geometric point of view, a μ -basis of a rational curve in \mathbb{R}^n is a set of n rational curves of smaller degree, that can replace the original curve for several operations like implicitizing, detecting properness, inverting, etc [2, 4, 5]. On the other hand, projective equivalences between rational curves in \mathbb{R}^n have been studied in recent years [1, 3]. The algorithms for checking projective equivalence depend heavily on the degrees of the curves to be analyzed. In this talk, we will show how projective equivalences between rational curves in \mathbb{R}^n are transferred to the elements of smallest degree of the μ -bases of the curves. These elements of smallest degree can be found without computing the whole μ -basis. As a result, we have a way to reduce the cost of computing the projective equivalences between rational curves in \mathbb{R}^n by replacing the given curves for the curves represented by the elements of smallest degree of the μ -bases of the curves, which have a much smaller degree compared to the original degree of the curves.

Joint work with: Carlos Hermoso (UAH), Sonia Pérez-Díaz (UAH), Li-Yong Shen (UCAS).

References

- Bizzarri M., Lávička M., Vršek J. (2020) Computing projective equivalences of special algebraic varieties. Journal of Computational and Applied Mathematics, Vol. 367, 112438.
- [2] Cox D.A., Sederberg T.W., Chen F. (1998) The Moving Line Ideal Basis of Planar Rational Curves. Computer Aided Geometric Design, Vol. 15, pp. 803–827.
- [3] Hauer M., Jüttler B. (2018) Projective and affine symmetries and equivalences of rational curves in arbitrary dimension. *Journal of Symbolic Computation*, Vol. 87, pp. 68–86. *Doklady Akademii Nauk*, 37(2):227–229, 1942.
- [4] Pérez-Díaz S., Shen L-Y. (2021) Inversion, Degree, Reparametrization and Implicitization of Rational Planar Curves Using μ-Basis. Computer Aided Geometric Design, Vol. 84, 101957.
- [5] Song N., Goldman R. (2009) mu-bases for polynomial systems in one variable. Computer Aided Geometric Design, Vol. 26, ppp. 217–230.