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We consider the problem of recovering an element x0 of a low-dimensional model Σ ⊂ Rn (e.g. Σk the set of
k-sparse vectors) from under-determined linear measurements y = Mx0 where M is a linear map. To perform
recovery, we consider the minimization of a convex regularizer subject to a data-fit constraint

x∗ = arg min
Mx=y

R(x). (1)

This minimization can be proven successful for sparse models and their generalizations (such as low rank
models) with the right choice of measurement matrices M (e.g. random Gaussian matrices with enough mea-
surements) [2, 4, 1, 3]. Given a model, we ask ourselves what is the “best” convex regularizer to perform its
recovery. A framework to define the optimality of a convex regularizer for the recovery of a given low dimen-
sional model was introduced in [6]. Based on explicit recovery guarantees of elements of Σ, it defines optimal
regularizers as functions R∗ that maximize a compliance measure AΣ(R) that quantifies the recovery capabilities
of elements of Σ by using minimization (1) with R:

R∗ ∈ arg max
R∈C

AΣ(R). (2)

where C is a set of convex functions. It was shown that the `1-norm was an optimal atomic norm for the recovery
of sparse models in minimal cases (k = 3) for compliance measures based on exact recovery guarantees and
an optimal atomic norm in the general case for compliance measures based on best known recovery guarantees
using the restricted isometry property [6, 7].

In this work (available as a full paper [5]), we build on these ideas and give elementary properties of the
maximization of compliance measures. We show the optimality of the `1-norm and the nuclear norm for the
recovery of sparse and low rank models respectively in the set of coercive continuous convex functions for
compliances based on the restricted isometry property. Finally, we construct near-optimal regularizers for
sparsity in levels models within the set of `1-norms weighed by levels. This result is a first example of explicit
construction of optimal regularizers beyond classical sparsity models.
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