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Figure 1: Learning curves for a
deep residual network with or-
thogonal weights on CIFAR10

We let f : Rp×p → R a smooth function, and consider the problem of
minimizing f over the orthogonal manifold Op = {X ∈ Rp×| X>X = Ip}.
We study iterative algorithms that produce a sequence of iterates Xk that
should converge to the solution of the problem. In order to find Xk+1,
Riemannian gradient descent [1] first computes the Riemannian gradient
Gk, i.e. the projection of ∇f(Xk) in the tangent space at Xk, which is the
linear space TXk

= {AXk| A> = −A}. Simple computations give Gk =
Skew(∇f(Xk)X>k )Xk. This algorithm then uses a retraction to move in the
opposite direction while staying on the manifold. For instance, the classical
exponential retraction gives Xk+1 = exp(−ηSkew(∇f(Xk)X>k ))Xk, with
η > 0 a step size: it is straightforward to check that if Xk is orthogonal, then
Xk+1 is still orthogonal, and that as η gets small, we have Xk+1 ' Xk−ηGk.
Unfortunately, the numerical computation of retractions on the orthogonal
manifold always involves some expensive linear algebra operation, such as
matrix inversion, exponential or square-root. These operations quickly become expensive as the dimension p
grows.

To bypass this limitation, we propose the landing algorithm which does not use retractions. Letting N (X) =
1
4‖X

>X − Ip‖2F the “distance” to the manifold, we define the landing field as
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Figure 2: Time required to compute
500 retractions when A and X are of
size p× p, on a GPU.

Λ(X) = Skew(∇f(X)X>)X + λ∇N (X),

and the landing algorithm simply iterates Xk+1 = Xk − ηΛ(Xk). The
algorithm is not constrained to stay on the manifold but the term
∇N (X) progressively attracts it towards the manifold.

One iteration of the landing algorithm only involves matrix multi-
plications, which makes it cheap compared to its retraction counter-
parts, especially on modern hardware like GPU’s. Fig 2 illustrates
the computational cost of the landing field compared to most classical
retractions. Theoretically, we show that the algorithm converges with
the usual rate for a non-convex problem: with small enough step-size
η, we get supk≥K N (Xk) = O( 1

K ) and supk≥K ‖Gk‖2 = O( 1
K ), show-

ing that the algorithm reaches stationary points of the optimization
problem at a 1/

√
K rate, just like Riemannian gradient descent [2].

Numerical experiments demonstrate the promises of our approach in
settings where computing retractions is very costly, such as training of deep neural networks with orthogonal
weights. Fig. 1 displays the test error of a deep residual network with orthogonal weights trained on the CIFAR
10 dataset: the landing method is the fastest.
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